tuanio's picture
Model save
14c6013
metadata
license: cc-by-nc-4.0
base_model: nguyenvulebinh/wav2vec2-base-vietnamese-250h
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: >-
      fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.5_g0.5-0.05_10_0.004_40
    results: []

fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.5_g0.5-0.05_10_0.004_40

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1651
  • Wer: 0.0985

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
1068.6505 0.94 50 527.9987 15.8840
924.9194 1.89 100 365.2998 15.7290
268.1159 2.83 150 45.3076 1.0
56.3914 3.77 200 42.2653 1.0
54.5992 4.72 250 41.2272 1.0
52.7823 5.66 300 40.2126 1.0
51.1032 6.6 350 39.6254 1.0
49.2081 7.55 400 38.7989 1.0
48.3538 8.49 450 38.5792 1.0
48.8615 9.43 500 38.4622 1.0
48.1912 10.38 550 38.1422 1.0
48.3589 11.32 600 38.6144 1.0
46.5985 12.26 650 39.6394 1.0473
45.5769 13.21 700 37.7580 0.9992
44.1749 14.15 750 36.0692 0.9991
41.8932 15.09 800 27.9404 0.9316
29.8551 16.04 850 14.1211 0.3930
16.9135 16.98 900 7.9824 0.2228
11.5569 17.92 950 5.8073 0.1693
9.1965 18.87 1000 4.6891 0.1577
7.6846 19.81 1050 4.0938 0.1444
6.6186 20.75 1100 3.7074 0.1337
6.1733 21.7 1150 3.3769 0.1279
5.5833 22.64 1200 3.1933 0.1288
5.1097 23.58 1250 3.0785 0.1232
4.8098 24.53 1300 3.0687 0.1210
4.784 25.47 1350 2.7771 0.1152
4.3574 26.42 1400 2.7347 0.1200
4.2972 27.36 1450 2.6853 0.1147
4.1072 28.3 1500 2.5680 0.1185
3.9651 29.25 1550 2.5938 0.1200
4.0325 30.19 1600 2.5324 0.1180
3.6586 31.13 1650 2.5847 0.1113
3.7213 32.08 1700 2.5886 0.1116
3.4746 33.02 1750 2.4285 0.1005
3.3572 33.96 1800 2.4607 0.1073
3.2202 34.91 1850 2.4459 0.1103
3.2437 35.85 1900 2.3630 0.1027
3.1303 36.79 1950 2.3281 0.1025
3.0037 37.74 2000 2.3129 0.1019
3.0523 38.68 2050 2.2962 0.0988
2.8943 39.62 2100 2.3238 0.1021
2.8502 40.57 2150 2.3549 0.1044
2.7045 41.51 2200 2.3680 0.1018
2.7291 42.45 2250 2.4172 0.1129
2.6162 43.4 2300 2.3216 0.1018
2.5643 44.34 2350 2.2663 0.0979
2.5842 45.28 2400 2.2408 0.0986
2.4498 46.23 2450 2.2695 0.1017
2.4177 47.17 2500 2.2029 0.0980
2.3297 48.11 2550 2.2254 0.0938
2.3637 49.06 2600 2.2551 0.1011
2.2528 50.0 2650 2.2350 0.1012
2.2221 50.94 2700 2.2253 0.0968
2.3083 51.89 2750 2.2426 0.0958
2.0585 52.83 2800 2.2169 0.0972
2.2349 53.77 2850 2.2151 0.1004
2.1969 54.72 2900 2.2562 0.1024
2.0415 55.66 2950 2.2862 0.1027
2.0126 56.6 3000 2.2167 0.1015
2.1 57.55 3050 2.2360 0.1024
2.0739 58.49 3100 2.2198 0.1056
1.9875 59.43 3150 2.1716 0.0987
2.0259 60.38 3200 2.2143 0.0999
1.8519 61.32 3250 2.1837 0.0958
1.9733 62.26 3300 2.1865 0.1008
1.8496 63.21 3350 2.2045 0.1054
1.9354 64.15 3400 2.1783 0.1002
1.8247 65.09 3450 2.1670 0.0989
1.8418 66.04 3500 2.1823 0.0993
1.8259 66.98 3550 2.1875 0.0990
1.8458 67.92 3600 2.2048 0.1000
1.7796 68.87 3650 2.2019 0.0975
1.7931 69.81 3700 2.1673 0.0955
1.789 70.75 3750 2.1924 0.0985
1.8166 71.7 3800 2.1839 0.0964
1.692 72.64 3850 2.1771 0.0950
1.6898 73.58 3900 2.1621 0.0944
1.5916 74.53 3950 2.1718 0.0973
1.7778 75.47 4000 2.1617 0.0973
1.6884 76.42 4050 2.1566 0.0982
1.7182 77.36 4100 2.1699 0.0968
1.6774 78.3 4150 2.1849 0.0964
1.5921 79.25 4200 2.1785 0.0962
1.7108 80.19 4250 2.1642 0.0981
1.7039 81.13 4300 2.1836 0.0997
1.6068 82.08 4350 2.1924 0.1002
1.6267 83.02 4400 2.1808 0.0979
1.6209 83.96 4450 2.1808 0.0976
1.6989 84.91 4500 2.1661 0.0976
1.6126 85.85 4550 2.1738 0.0988
1.6623 86.79 4600 2.1695 0.0979
1.637 87.74 4650 2.1702 0.0989
1.63 88.68 4700 2.1631 0.0973
1.6153 89.62 4750 2.1659 0.0985
1.4989 90.57 4800 2.1691 0.0991
1.7316 91.51 4850 2.1688 0.0986
1.4623 92.45 4900 2.1635 0.0980
1.6932 93.4 4950 2.1671 0.0986
1.5762 94.34 5000 2.1678 0.0990
1.5346 95.28 5050 2.1654 0.0984
1.6015 96.23 5100 2.1667 0.0986
1.5609 97.17 5150 2.1653 0.0982
1.6414 98.11 5200 2.1648 0.0983
1.581 99.06 5250 2.1666 0.0987
1.6469 100.0 5300 2.1651 0.0985

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1