fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.5_g1.0-0.05_10_0.004_40
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.0619
- Wer: 0.0997
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1068.4723 | 0.94 | 50 | 533.5247 | 15.8344 |
704.929 | 1.89 | 100 | 149.4564 | 0.9983 |
104.7041 | 2.83 | 150 | 45.2165 | 1.0 |
57.2527 | 3.77 | 200 | 42.7504 | 1.0 |
55.1203 | 4.72 | 250 | 41.4518 | 1.0 |
52.9285 | 5.66 | 300 | 39.8048 | 1.0 |
51.1361 | 6.6 | 350 | 38.6911 | 1.0 |
49.1867 | 7.55 | 400 | 37.8983 | 1.0 |
48.293 | 8.49 | 450 | 37.5179 | 1.0 |
48.8025 | 9.43 | 500 | 37.2562 | 1.0 |
48.0603 | 10.38 | 550 | 37.0740 | 1.0 |
48.0837 | 11.32 | 600 | 37.0175 | 0.9999 |
45.7671 | 12.26 | 650 | 33.4394 | 0.9620 |
38.2468 | 13.21 | 700 | 20.5908 | 0.5614 |
22.0048 | 14.15 | 750 | 9.7715 | 0.2622 |
13.6453 | 15.09 | 800 | 6.5392 | 0.1925 |
10.3565 | 16.04 | 850 | 5.1822 | 0.1627 |
8.4776 | 16.98 | 900 | 4.4310 | 0.1547 |
7.2782 | 17.92 | 950 | 3.9109 | 0.1441 |
6.6759 | 18.87 | 1000 | 3.5788 | 0.1371 |
6.0682 | 19.81 | 1050 | 3.3775 | 0.1336 |
5.5782 | 20.75 | 1100 | 3.1172 | 0.1222 |
5.4805 | 21.7 | 1150 | 3.0142 | 0.1225 |
5.0893 | 22.64 | 1200 | 2.9002 | 0.1234 |
4.9178 | 23.58 | 1250 | 2.9029 | 0.1257 |
4.5324 | 24.53 | 1300 | 2.7464 | 0.1149 |
4.4924 | 25.47 | 1350 | 2.5754 | 0.1104 |
4.1324 | 26.42 | 1400 | 2.6028 | 0.1099 |
4.2581 | 27.36 | 1450 | 2.5399 | 0.1049 |
3.8897 | 28.3 | 1500 | 2.4484 | 0.1062 |
3.8507 | 29.25 | 1550 | 2.4717 | 0.1081 |
3.7424 | 30.19 | 1600 | 2.4559 | 0.1114 |
3.4716 | 31.13 | 1650 | 2.3895 | 0.1043 |
3.5385 | 32.08 | 1700 | 2.4023 | 0.1079 |
3.4308 | 33.02 | 1750 | 2.3014 | 0.1022 |
3.3027 | 33.96 | 1800 | 2.3091 | 0.1054 |
3.078 | 34.91 | 1850 | 2.2783 | 0.1000 |
3.1628 | 35.85 | 1900 | 2.2364 | 0.1029 |
3.1191 | 36.79 | 1950 | 2.1291 | 0.0963 |
2.9528 | 37.74 | 2000 | 2.1785 | 0.0975 |
2.9116 | 38.68 | 2050 | 2.1666 | 0.1006 |
2.7249 | 39.62 | 2100 | 2.1878 | 0.1053 |
2.7466 | 40.57 | 2150 | 2.1900 | 0.0997 |
2.6349 | 41.51 | 2200 | 2.1549 | 0.0963 |
2.6933 | 42.45 | 2250 | 2.1418 | 0.1030 |
2.5316 | 43.4 | 2300 | 2.1705 | 0.0982 |
2.5175 | 44.34 | 2350 | 2.1444 | 0.0991 |
2.5374 | 45.28 | 2400 | 2.1134 | 0.0970 |
2.4234 | 46.23 | 2450 | 2.1473 | 0.1052 |
2.318 | 47.17 | 2500 | 2.1129 | 0.1016 |
2.2632 | 48.11 | 2550 | 2.1011 | 0.0908 |
2.3666 | 49.06 | 2600 | 2.1168 | 0.0976 |
2.2127 | 50.0 | 2650 | 2.1183 | 0.0968 |
2.132 | 50.94 | 2700 | 2.0882 | 0.0943 |
2.2458 | 51.89 | 2750 | 2.0710 | 0.0934 |
1.9839 | 52.83 | 2800 | 2.0990 | 0.1026 |
2.147 | 53.77 | 2850 | 2.0917 | 0.1017 |
2.1353 | 54.72 | 2900 | 2.1009 | 0.1002 |
1.9557 | 55.66 | 2950 | 2.1425 | 0.1057 |
1.8819 | 56.6 | 3000 | 2.1140 | 0.0979 |
2.0495 | 57.55 | 3050 | 2.1637 | 0.1020 |
2.027 | 58.49 | 3100 | 2.1385 | 0.1025 |
1.9783 | 59.43 | 3150 | 2.1003 | 0.1002 |
1.9553 | 60.38 | 3200 | 2.1139 | 0.1043 |
1.7827 | 61.32 | 3250 | 2.1029 | 0.0967 |
1.9633 | 62.26 | 3300 | 2.0796 | 0.0941 |
1.7306 | 63.21 | 3350 | 2.0947 | 0.1009 |
1.8145 | 64.15 | 3400 | 2.1027 | 0.1029 |
1.7772 | 65.09 | 3450 | 2.1160 | 0.1014 |
1.784 | 66.04 | 3500 | 2.1080 | 0.1038 |
1.8016 | 66.98 | 3550 | 2.1155 | 0.0991 |
1.7837 | 67.92 | 3600 | 2.1112 | 0.1004 |
1.7027 | 68.87 | 3650 | 2.0888 | 0.0955 |
1.6968 | 69.81 | 3700 | 2.0739 | 0.0977 |
1.6873 | 70.75 | 3750 | 2.0948 | 0.0972 |
1.7168 | 71.7 | 3800 | 2.1186 | 0.0989 |
1.6195 | 72.64 | 3850 | 2.0967 | 0.0969 |
1.6414 | 73.58 | 3900 | 2.0811 | 0.1018 |
1.5118 | 74.53 | 3950 | 2.0674 | 0.0987 |
1.6768 | 75.47 | 4000 | 2.0616 | 0.0959 |
1.5945 | 76.42 | 4050 | 2.0632 | 0.1009 |
1.6417 | 77.36 | 4100 | 2.1003 | 0.1040 |
1.6208 | 78.3 | 4150 | 2.0939 | 0.1023 |
1.5037 | 79.25 | 4200 | 2.0788 | 0.0998 |
1.6181 | 80.19 | 4250 | 2.0641 | 0.0955 |
1.5608 | 81.13 | 4300 | 2.0864 | 0.1023 |
1.5658 | 82.08 | 4350 | 2.0802 | 0.1000 |
1.5369 | 83.02 | 4400 | 2.0750 | 0.0984 |
1.5474 | 83.96 | 4450 | 2.0582 | 0.0976 |
1.6031 | 84.91 | 4500 | 2.0666 | 0.0998 |
1.5224 | 85.85 | 4550 | 2.0695 | 0.0984 |
1.5687 | 86.79 | 4600 | 2.0645 | 0.0972 |
1.5393 | 87.74 | 4650 | 2.0702 | 0.0995 |
1.6074 | 88.68 | 4700 | 2.0673 | 0.0975 |
1.5601 | 89.62 | 4750 | 2.0622 | 0.0991 |
1.4178 | 90.57 | 4800 | 2.0666 | 0.0998 |
1.6219 | 91.51 | 4850 | 2.0620 | 0.1004 |
1.4044 | 92.45 | 4900 | 2.0572 | 0.0990 |
1.628 | 93.4 | 4950 | 2.0611 | 0.0993 |
1.5058 | 94.34 | 5000 | 2.0633 | 0.0995 |
1.4636 | 95.28 | 5050 | 2.0628 | 0.0998 |
1.5394 | 96.23 | 5100 | 2.0618 | 0.0999 |
1.4808 | 97.17 | 5150 | 2.0625 | 0.1004 |
1.5651 | 98.11 | 5200 | 2.0627 | 0.0998 |
1.499 | 99.06 | 5250 | 2.0618 | 0.0997 |
1.5463 | 100.0 | 5300 | 2.0619 | 0.0997 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 3
Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.5_g1.0-0.05_10_0.004_40
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h