fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g1.0-0.05_10_0.004_40
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.1907
- Wer: 0.1001
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1628.3266 | 0.94 | 50 | 795.4863 | 15.7055 |
1167.4639 | 1.89 | 100 | 276.5289 | 0.9954 |
193.5269 | 2.83 | 150 | 67.2639 | 1.0 |
86.2802 | 3.77 | 200 | 63.6259 | 1.0 |
82.8944 | 4.72 | 250 | 61.8939 | 1.0 |
79.9575 | 5.66 | 300 | 59.7914 | 1.0 |
77.3429 | 6.6 | 350 | 58.1507 | 1.0 |
74.0584 | 7.55 | 400 | 57.2977 | 1.0 |
72.6694 | 8.49 | 450 | 56.7115 | 1.0 |
73.417 | 9.43 | 500 | 56.6074 | 1.0 |
72.4291 | 10.38 | 550 | 56.4755 | 1.0 |
72.7847 | 11.32 | 600 | 56.8623 | 1.0 |
69.3297 | 12.26 | 650 | 49.6540 | 0.9637 |
54.2644 | 13.21 | 700 | 29.1559 | 0.5631 |
31.2303 | 14.15 | 750 | 13.8957 | 0.2414 |
19.4522 | 15.09 | 800 | 9.7460 | 0.1949 |
15.0046 | 16.04 | 850 | 7.6735 | 0.1622 |
12.3783 | 16.98 | 900 | 6.5559 | 0.1520 |
10.7256 | 17.92 | 950 | 5.7852 | 0.1423 |
9.8218 | 18.87 | 1000 | 5.4473 | 0.1395 |
9.0115 | 19.81 | 1050 | 5.1250 | 0.1356 |
8.1076 | 20.75 | 1100 | 4.7980 | 0.1233 |
7.9779 | 21.7 | 1150 | 4.6150 | 0.1211 |
7.6027 | 22.64 | 1200 | 4.6507 | 0.1251 |
7.4535 | 23.58 | 1250 | 4.4814 | 0.1210 |
6.946 | 24.53 | 1300 | 4.4369 | 0.1149 |
7.0627 | 25.47 | 1350 | 4.1153 | 0.1139 |
6.2482 | 26.42 | 1400 | 4.0045 | 0.1101 |
6.2238 | 27.36 | 1450 | 4.0355 | 0.1158 |
5.8919 | 28.3 | 1500 | 3.9625 | 0.1154 |
5.7955 | 29.25 | 1550 | 3.7957 | 0.1127 |
5.4849 | 30.19 | 1600 | 3.7986 | 0.1058 |
5.1108 | 31.13 | 1650 | 3.8188 | 0.1070 |
5.3354 | 32.08 | 1700 | 3.6909 | 0.1024 |
5.1149 | 33.02 | 1750 | 3.6227 | 0.1023 |
4.976 | 33.96 | 1800 | 3.6176 | 0.1016 |
4.5904 | 34.91 | 1850 | 3.5959 | 0.1079 |
4.6613 | 35.85 | 1900 | 3.5000 | 0.1069 |
4.7697 | 36.79 | 1950 | 3.5211 | 0.1014 |
4.4224 | 37.74 | 2000 | 3.4720 | 0.1001 |
4.5255 | 38.68 | 2050 | 3.4178 | 0.0983 |
4.2808 | 39.62 | 2100 | 3.4801 | 0.1044 |
4.2407 | 40.57 | 2150 | 3.4080 | 0.1000 |
3.9611 | 41.51 | 2200 | 3.4514 | 0.1049 |
4.014 | 42.45 | 2250 | 3.3983 | 0.1089 |
3.8487 | 43.4 | 2300 | 3.4164 | 0.1042 |
3.8132 | 44.34 | 2350 | 3.3562 | 0.0958 |
3.6973 | 45.28 | 2400 | 3.2839 | 0.0978 |
3.606 | 46.23 | 2450 | 3.3125 | 0.1009 |
3.5412 | 47.17 | 2500 | 3.2580 | 0.0977 |
3.3971 | 48.11 | 2550 | 3.3065 | 0.0984 |
3.4795 | 49.06 | 2600 | 3.3312 | 0.1037 |
3.302 | 50.0 | 2650 | 3.3015 | 0.0986 |
3.2486 | 50.94 | 2700 | 3.2506 | 0.0977 |
3.3977 | 51.89 | 2750 | 3.2406 | 0.0952 |
3.0229 | 52.83 | 2800 | 3.2880 | 0.0989 |
3.2615 | 53.77 | 2850 | 3.3112 | 0.0998 |
3.2023 | 54.72 | 2900 | 3.2895 | 0.1037 |
3.0037 | 55.66 | 2950 | 3.3394 | 0.1018 |
2.9249 | 56.6 | 3000 | 3.2351 | 0.0974 |
3.112 | 57.55 | 3050 | 3.2868 | 0.1019 |
3.0261 | 58.49 | 3100 | 3.3241 | 0.1039 |
2.8959 | 59.43 | 3150 | 3.2251 | 0.0947 |
2.946 | 60.38 | 3200 | 3.2880 | 0.1012 |
2.6933 | 61.32 | 3250 | 3.2595 | 0.1031 |
2.8755 | 62.26 | 3300 | 3.2140 | 0.1048 |
2.606 | 63.21 | 3350 | 3.2743 | 0.1075 |
2.7607 | 64.15 | 3400 | 3.2455 | 0.1053 |
2.6394 | 65.09 | 3450 | 3.2335 | 0.0994 |
2.6899 | 66.04 | 3500 | 3.2278 | 0.1004 |
2.719 | 66.98 | 3550 | 3.2012 | 0.0979 |
2.6997 | 67.92 | 3600 | 3.2009 | 0.0979 |
2.5935 | 68.87 | 3650 | 3.2141 | 0.0978 |
2.6115 | 69.81 | 3700 | 3.1760 | 0.0947 |
2.5713 | 70.75 | 3750 | 3.1937 | 0.0977 |
2.6647 | 71.7 | 3800 | 3.1629 | 0.0986 |
2.4878 | 72.64 | 3850 | 3.1675 | 0.0952 |
2.4761 | 73.58 | 3900 | 3.1951 | 0.0976 |
2.3124 | 74.53 | 3950 | 3.1629 | 0.0954 |
2.5718 | 75.47 | 4000 | 3.1577 | 0.0978 |
2.4606 | 76.42 | 4050 | 3.1632 | 0.0973 |
2.5313 | 77.36 | 4100 | 3.1841 | 0.0988 |
2.5124 | 78.3 | 4150 | 3.1894 | 0.0987 |
2.3324 | 79.25 | 4200 | 3.1719 | 0.0966 |
2.4468 | 80.19 | 4250 | 3.1760 | 0.0964 |
2.4035 | 81.13 | 4300 | 3.2014 | 0.0983 |
2.3834 | 82.08 | 4350 | 3.1823 | 0.0966 |
2.3655 | 83.02 | 4400 | 3.1758 | 0.0948 |
2.3525 | 83.96 | 4450 | 3.1921 | 0.0980 |
2.4428 | 84.91 | 4500 | 3.1990 | 0.0970 |
2.3276 | 85.85 | 4550 | 3.1907 | 0.0984 |
2.4423 | 86.79 | 4600 | 3.1893 | 0.0977 |
2.3457 | 87.74 | 4650 | 3.2001 | 0.1005 |
2.4146 | 88.68 | 4700 | 3.1883 | 0.0985 |
2.3415 | 89.62 | 4750 | 3.1934 | 0.0997 |
2.2057 | 90.57 | 4800 | 3.1939 | 0.0995 |
2.5141 | 91.51 | 4850 | 3.1944 | 0.1006 |
2.175 | 92.45 | 4900 | 3.1808 | 0.0986 |
2.4668 | 93.4 | 4950 | 3.1885 | 0.0994 |
2.2732 | 94.34 | 5000 | 3.1877 | 0.0998 |
2.2636 | 95.28 | 5050 | 3.1877 | 0.0989 |
2.3504 | 96.23 | 5100 | 3.1904 | 0.1000 |
2.2721 | 97.17 | 5150 | 3.1917 | 0.1005 |
2.4014 | 98.11 | 5200 | 3.1922 | 0.1003 |
2.3263 | 99.06 | 5250 | 3.1897 | 0.0998 |
2.3731 | 100.0 | 5300 | 3.1907 | 0.1001 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 3
Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g1.0-0.05_10_0.004_40
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h