fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g1.0-0.05_10_0.004_40

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1907
  • Wer: 0.1001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
1628.3266 0.94 50 795.4863 15.7055
1167.4639 1.89 100 276.5289 0.9954
193.5269 2.83 150 67.2639 1.0
86.2802 3.77 200 63.6259 1.0
82.8944 4.72 250 61.8939 1.0
79.9575 5.66 300 59.7914 1.0
77.3429 6.6 350 58.1507 1.0
74.0584 7.55 400 57.2977 1.0
72.6694 8.49 450 56.7115 1.0
73.417 9.43 500 56.6074 1.0
72.4291 10.38 550 56.4755 1.0
72.7847 11.32 600 56.8623 1.0
69.3297 12.26 650 49.6540 0.9637
54.2644 13.21 700 29.1559 0.5631
31.2303 14.15 750 13.8957 0.2414
19.4522 15.09 800 9.7460 0.1949
15.0046 16.04 850 7.6735 0.1622
12.3783 16.98 900 6.5559 0.1520
10.7256 17.92 950 5.7852 0.1423
9.8218 18.87 1000 5.4473 0.1395
9.0115 19.81 1050 5.1250 0.1356
8.1076 20.75 1100 4.7980 0.1233
7.9779 21.7 1150 4.6150 0.1211
7.6027 22.64 1200 4.6507 0.1251
7.4535 23.58 1250 4.4814 0.1210
6.946 24.53 1300 4.4369 0.1149
7.0627 25.47 1350 4.1153 0.1139
6.2482 26.42 1400 4.0045 0.1101
6.2238 27.36 1450 4.0355 0.1158
5.8919 28.3 1500 3.9625 0.1154
5.7955 29.25 1550 3.7957 0.1127
5.4849 30.19 1600 3.7986 0.1058
5.1108 31.13 1650 3.8188 0.1070
5.3354 32.08 1700 3.6909 0.1024
5.1149 33.02 1750 3.6227 0.1023
4.976 33.96 1800 3.6176 0.1016
4.5904 34.91 1850 3.5959 0.1079
4.6613 35.85 1900 3.5000 0.1069
4.7697 36.79 1950 3.5211 0.1014
4.4224 37.74 2000 3.4720 0.1001
4.5255 38.68 2050 3.4178 0.0983
4.2808 39.62 2100 3.4801 0.1044
4.2407 40.57 2150 3.4080 0.1000
3.9611 41.51 2200 3.4514 0.1049
4.014 42.45 2250 3.3983 0.1089
3.8487 43.4 2300 3.4164 0.1042
3.8132 44.34 2350 3.3562 0.0958
3.6973 45.28 2400 3.2839 0.0978
3.606 46.23 2450 3.3125 0.1009
3.5412 47.17 2500 3.2580 0.0977
3.3971 48.11 2550 3.3065 0.0984
3.4795 49.06 2600 3.3312 0.1037
3.302 50.0 2650 3.3015 0.0986
3.2486 50.94 2700 3.2506 0.0977
3.3977 51.89 2750 3.2406 0.0952
3.0229 52.83 2800 3.2880 0.0989
3.2615 53.77 2850 3.3112 0.0998
3.2023 54.72 2900 3.2895 0.1037
3.0037 55.66 2950 3.3394 0.1018
2.9249 56.6 3000 3.2351 0.0974
3.112 57.55 3050 3.2868 0.1019
3.0261 58.49 3100 3.3241 0.1039
2.8959 59.43 3150 3.2251 0.0947
2.946 60.38 3200 3.2880 0.1012
2.6933 61.32 3250 3.2595 0.1031
2.8755 62.26 3300 3.2140 0.1048
2.606 63.21 3350 3.2743 0.1075
2.7607 64.15 3400 3.2455 0.1053
2.6394 65.09 3450 3.2335 0.0994
2.6899 66.04 3500 3.2278 0.1004
2.719 66.98 3550 3.2012 0.0979
2.6997 67.92 3600 3.2009 0.0979
2.5935 68.87 3650 3.2141 0.0978
2.6115 69.81 3700 3.1760 0.0947
2.5713 70.75 3750 3.1937 0.0977
2.6647 71.7 3800 3.1629 0.0986
2.4878 72.64 3850 3.1675 0.0952
2.4761 73.58 3900 3.1951 0.0976
2.3124 74.53 3950 3.1629 0.0954
2.5718 75.47 4000 3.1577 0.0978
2.4606 76.42 4050 3.1632 0.0973
2.5313 77.36 4100 3.1841 0.0988
2.5124 78.3 4150 3.1894 0.0987
2.3324 79.25 4200 3.1719 0.0966
2.4468 80.19 4250 3.1760 0.0964
2.4035 81.13 4300 3.2014 0.0983
2.3834 82.08 4350 3.1823 0.0966
2.3655 83.02 4400 3.1758 0.0948
2.3525 83.96 4450 3.1921 0.0980
2.4428 84.91 4500 3.1990 0.0970
2.3276 85.85 4550 3.1907 0.0984
2.4423 86.79 4600 3.1893 0.0977
2.3457 87.74 4650 3.2001 0.1005
2.4146 88.68 4700 3.1883 0.0985
2.3415 89.62 4750 3.1934 0.0997
2.2057 90.57 4800 3.1939 0.0995
2.5141 91.51 4850 3.1944 0.1006
2.175 92.45 4900 3.1808 0.0986
2.4668 93.4 4950 3.1885 0.0994
2.2732 94.34 5000 3.1877 0.0998
2.2636 95.28 5050 3.1877 0.0989
2.3504 96.23 5100 3.1904 0.1000
2.2721 97.17 5150 3.1917 0.1005
2.4014 98.11 5200 3.1922 0.1003
2.3263 99.06 5250 3.1897 0.0998
2.3731 100.0 5300 3.1907 0.1001

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g1.0-0.05_10_0.004_40

Finetuned
(56)
this model