fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g0.5-0.05_10_0.004_40

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1495
  • Wer: 0.0930

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
2149.8069 0.94 50 1029.5103 12.5140
1384.9331 1.89 100 295.9721 0.9978
219.794 2.83 150 86.8886 1.0
113.249 3.77 200 83.8456 1.0
109.1227 4.72 250 81.2277 1.0
105.1573 5.66 300 78.3234 1.0
101.7412 6.6 350 76.3514 1.0
97.6664 7.55 400 74.8664 1.0
95.8132 8.49 450 74.1711 1.0
96.7632 9.43 500 73.7442 1.0
95.3477 10.38 550 73.6445 1.0
95.4528 11.32 600 73.7788 0.9991
91.1317 12.26 650 66.9474 0.9809
71.8284 13.21 700 35.2335 0.4713
40.6304 14.15 750 19.0379 0.2671
26.5956 15.09 800 13.2650 0.2020
20.6269 16.04 850 10.4302 0.1667
17.2297 16.98 900 9.0816 0.1531
14.7348 17.92 950 7.7998 0.1358
13.4356 18.87 1000 7.3014 0.1381
12.2847 19.81 1050 6.9627 0.1386
11.5782 20.75 1100 6.3901 0.1300
11.1732 21.7 1150 6.0007 0.1185
10.2335 22.64 1200 5.9507 0.1261
9.7343 23.58 1250 5.6958 0.1177
9.0428 24.53 1300 5.6682 0.1160
9.117 25.47 1350 5.4908 0.1161
8.4094 26.42 1400 5.3418 0.1135
8.2214 27.36 1450 5.1586 0.1094
7.885 28.3 1500 4.9319 0.1086
7.7676 29.25 1550 5.0031 0.1129
7.4375 30.19 1600 4.9441 0.1100
7.0199 31.13 1650 4.7904 0.1041
7.0727 32.08 1700 4.7495 0.1031
6.6648 33.02 1750 4.6025 0.1018
6.5168 33.96 1800 4.7012 0.1019
6.2194 34.91 1850 4.6766 0.1087
6.15 35.85 1900 4.5767 0.1031
6.1484 36.79 1950 4.4289 0.1064
5.7505 37.74 2000 4.4011 0.0991
5.8478 38.68 2050 4.4077 0.0952
5.5878 39.62 2100 4.4689 0.0989
5.6626 40.57 2150 4.4692 0.0950
5.3951 41.51 2200 4.4790 0.0967
5.3447 42.45 2250 4.3929 0.0974
5.1027 43.4 2300 4.3692 0.0949
5.1015 44.34 2350 4.3436 0.0935
5.0664 45.28 2400 4.2644 0.0956
4.7384 46.23 2450 4.2963 0.0999
4.6469 47.17 2500 4.2131 0.0933
4.5561 48.11 2550 4.2021 0.0952
4.7177 49.06 2600 4.2031 0.0983
4.4587 50.0 2650 4.2315 0.0991
4.3943 50.94 2700 4.2598 0.0953
4.5284 51.89 2750 4.1909 0.0944
4.0457 52.83 2800 4.2877 0.0963
4.2793 53.77 2850 4.2052 0.0953
4.387 54.72 2900 4.2593 0.1024
3.9789 55.66 2950 4.2190 0.0950
3.8419 56.6 3000 4.2314 0.0930
4.0432 57.55 3050 4.2830 0.0983
4.0056 58.49 3100 4.2671 0.1029
3.8839 59.43 3150 4.2807 0.0951
3.9377 60.38 3200 4.3071 0.1009
3.6095 61.32 3250 4.2250 0.0938
3.944 62.26 3300 4.2492 0.1008
3.5562 63.21 3350 4.2156 0.1013
3.6647 64.15 3400 4.2157 0.0974
3.5694 65.09 3450 4.2178 0.0970
3.6198 66.04 3500 4.1781 0.0961
3.5949 66.98 3550 4.1398 0.0929
3.605 67.92 3600 4.1940 0.0969
3.4902 68.87 3650 4.1712 0.0918
3.4942 69.81 3700 4.1447 0.0898
3.4367 70.75 3750 4.1606 0.0944
3.4854 71.7 3800 4.1472 0.0932
3.3036 72.64 3850 4.1874 0.0923
3.2617 73.58 3900 4.1866 0.0941
3.1137 74.53 3950 4.1552 0.0906
3.4462 75.47 4000 4.1435 0.0905
3.2211 76.42 4050 4.1213 0.0935
3.3305 77.36 4100 4.1661 0.0933
3.2492 78.3 4150 4.1404 0.0923
3.0898 79.25 4200 4.1700 0.0928
3.2347 80.19 4250 4.1557 0.0903
3.2544 81.13 4300 4.1916 0.0961
3.1672 82.08 4350 4.1605 0.0918
3.1577 83.02 4400 4.1670 0.0921
3.0994 83.96 4450 4.1541 0.0916
3.2358 84.91 4500 4.1625 0.0917
3.0938 85.85 4550 4.1797 0.0923
3.1622 86.79 4600 4.1639 0.0909
3.2359 87.74 4650 4.1759 0.0938
3.188 88.68 4700 4.1590 0.0913
3.177 89.62 4750 4.1573 0.0912
2.9153 90.57 4800 4.1643 0.0926
3.3507 91.51 4850 4.1631 0.0930
2.8699 92.45 4900 4.1474 0.0913
3.3063 93.4 4950 4.1534 0.0926
3.0762 94.34 5000 4.1586 0.0926
2.9829 95.28 5050 4.1550 0.0928
3.172 96.23 5100 4.1527 0.0930
3.0076 97.17 5150 4.1520 0.0931
3.125 98.11 5200 4.1517 0.0926
3.0391 99.06 5250 4.1495 0.0928
3.2004 100.0 5300 4.1495 0.0930

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.99_g0.5-0.05_10_0.004_40

Finetuned
(56)
this model