TunBERT / README.md
not-lain's picture
Update README.md
0526e55
|
raw
history blame
2.17 kB
---
license: mit
---
# Disclamer
I do not own, distribute, or take credits for this model, all copyrights belong to [Instadeep](https://huggingface.co/InstaDeepAI) under the [MIT licence](https://github.com/instadeepai/tunbert/)
# how to load the model
download the weights
```
!git clone https://huggingface.co/not-lain/TunBERT
```
load the model
```python
import torch.nn as nn
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForSequenceClassification, PreTrainedModel,AutoConfig, BertModel
from transformers.modeling_outputs import SequenceClassifierOutput
config = AutoConfig.from_pretrained("not-lain/TunBERT")
class classifier(nn.Module):
def __init__(self,config):
super().__init__()
self.layer0 = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=True)
self.layer1 = nn.Linear(in_features=config.hidden_size, out_features=config.type_vocab_size, bias=True)
def forward(self,tensor):
out1 = self.layer0(tensor)
return self.layer1(out1)
class TunBERT(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.BertModel = BertModel(config)
self.dropout = nn.Dropout(p=0.1, inplace=False)
self.classifier = classifier(config)
def forward(self,input_ids=None,token_type_ids=None,attention_mask=None,labels=None) :
outputs = self.BertModel(input_ids,token_type_ids,attention_mask)
sequence_output = self.dropout(outputs.last_hidden_state)
logits = self.classifier(sequence_output)
loss =None
if labels is not None :
loss_func = nn.CrossentropyLoss()
loss = loss_func(logits.view(-1,self.config.type_vocab_size),labels.view(-1))
return SequenceClassifierOutput(loss = loss, logits= logits, hidden_states=outputs.last_hidden_state,attentions=outputs.attentions)
tunbert = TunBERT(config)
tunbert.load_state_dict(torch.load("TunBERT/pytorch_model.bin"))
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
```
# how to use the model
```python
text = "[insert text here]"
inputs = tokenizer(text,return_tensors='pt')
output = model(**inputs)
```