|
--- |
|
library_name: setfit |
|
metrics: |
|
- f1 |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: To make introductions between Camelot's Chairman and the Cabinet Secretary. |
|
We discussed the operation of the UK National Lottery and how to maximise returns |
|
to National Lottery Good Causes as well as our plans to celebrate the 25th birthday |
|
of The National Lottery. |
|
- text: Discussion on crime |
|
- text: To discuss Northern Powerhouse Rail and HS2 |
|
- text: To discuss food security |
|
- text: Electricity market |
|
inference: false |
|
model-index: |
|
- name: SetFit |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: f1 |
|
value: 0.9056603773584904 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.9572649572649573 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 4 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | F1 | Accuracy | |
|
|:--------|:-------|:---------| |
|
| **all** | 0.9057 | 0.9573 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("twright8/setfit-oversample-labels-lobbying") |
|
# Run inference |
|
preds = model("Electricity market") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 2 | 21.5644 | 153 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 2) |
|
- num_epochs: (6, 9) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (7.928034854554858e-06, 2.7001088851580374e-05) |
|
- head_learning_rate: 0.009321171293151879 |
|
- loss: CoSENTLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: True |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:--------:|:-------------:|:---------------:| |
|
| 0.0018 | 1 | 8.669 | - | |
|
| 0.0880 | 50 | 8.6617 | - | |
|
| 0.1761 | 100 | 12.5549 | - | |
|
| 0.2641 | 150 | 3.1895 | - | |
|
| 0.3521 | 200 | 16.3181 | - | |
|
| 0.4401 | 250 | 0.7513 | - | |
|
| 0.5282 | 300 | 4.6653 | - | |
|
| 0.0018 | 1 | 0.0059 | - | |
|
| 0.0880 | 50 | 3.4564 | - | |
|
| 0.1761 | 100 | 0.5523 | - | |
|
| 0.2641 | 150 | 0.2372 | - | |
|
| 0.3521 | 200 | 4.288 | - | |
|
| 0.4401 | 250 | 0.0027 | - | |
|
| 0.5282 | 300 | 0.0002 | - | |
|
| 0.6162 | 350 | 0.0002 | - | |
|
| 0.7042 | 400 | 0.0001 | - | |
|
| 0.7923 | 450 | 0.0015 | - | |
|
| 0.8803 | 500 | 3.5596 | - | |
|
| 0.9683 | 550 | 0.0 | - | |
|
| 1.0 | 568 | - | 10.2261 | |
|
| 1.0563 | 600 | 0.0 | - | |
|
| 1.1444 | 650 | 0.0011 | - | |
|
| 1.2324 | 700 | 0.0013 | - | |
|
| 1.3204 | 750 | 0.0037 | - | |
|
| 1.4085 | 800 | 0.0013 | - | |
|
| 1.4965 | 850 | 0.0002 | - | |
|
| 1.5845 | 900 | 0.0 | - | |
|
| 1.6725 | 950 | 0.0 | - | |
|
| 1.7606 | 1000 | 0.0001 | - | |
|
| 1.8486 | 1050 | 0.0001 | - | |
|
| 1.9366 | 1100 | 0.0001 | - | |
|
| 2.0 | 1136 | - | 8.4908 | |
|
| 2.0246 | 1150 | 0.0001 | - | |
|
| 2.1127 | 1200 | 0.0 | - | |
|
| 2.2007 | 1250 | 0.0005 | - | |
|
| 2.2887 | 1300 | 0.0004 | - | |
|
| 2.3768 | 1350 | 0.0 | - | |
|
| 2.4648 | 1400 | 0.0009 | - | |
|
| 2.5528 | 1450 | 0.0 | - | |
|
| 2.6408 | 1500 | 0.0 | - | |
|
| 2.7289 | 1550 | 0.0 | - | |
|
| 2.8169 | 1600 | 0.0 | - | |
|
| 2.9049 | 1650 | 0.0001 | - | |
|
| 2.9930 | 1700 | 0.0003 | - | |
|
| 3.0 | 1704 | - | 8.5594 | |
|
| 3.0810 | 1750 | 0.0001 | - | |
|
| 3.1690 | 1800 | 0.0 | - | |
|
| 3.2570 | 1850 | 0.0002 | - | |
|
| 3.3451 | 1900 | 0.0001 | - | |
|
| 3.4331 | 1950 | 0.0 | - | |
|
| 3.5211 | 2000 | 0.0 | - | |
|
| 3.6092 | 2050 | 0.0 | - | |
|
| 3.6972 | 2100 | 0.0 | - | |
|
| 3.7852 | 2150 | 0.0 | - | |
|
| 3.8732 | 2200 | 0.0002 | - | |
|
| 3.9613 | 2250 | 0.0001 | - | |
|
| **4.0** | **2272** | **-** | **8.4573** | |
|
| 4.0493 | 2300 | 0.0 | - | |
|
| 4.1373 | 2350 | 0.0 | - | |
|
| 4.2254 | 2400 | 0.0002 | - | |
|
| 4.3134 | 2450 | 0.0 | - | |
|
| 4.4014 | 2500 | 0.0003 | - | |
|
| 4.4894 | 2550 | 0.0001 | - | |
|
| 4.5775 | 2600 | 0.0001 | - | |
|
| 4.6655 | 2650 | 0.0001 | - | |
|
| 4.7535 | 2700 | 0.0001 | - | |
|
| 4.8415 | 2750 | 0.0001 | - | |
|
| 4.9296 | 2800 | 0.0012 | - | |
|
| 5.0 | 2840 | - | 8.6305 | |
|
| 5.0176 | 2850 | 0.0009 | - | |
|
| 5.1056 | 2900 | 0.0 | - | |
|
| 5.1937 | 2950 | 0.0001 | - | |
|
| 5.2817 | 3000 | 0.0 | - | |
|
| 5.3697 | 3050 | 0.0 | - | |
|
| 5.4577 | 3100 | 0.0001 | - | |
|
| 5.5458 | 3150 | 0.0007 | - | |
|
| 5.6338 | 3200 | 0.0002 | - | |
|
| 5.7218 | 3250 | 0.0 | - | |
|
| 5.8099 | 3300 | 0.0001 | - | |
|
| 5.8979 | 3350 | 0.0002 | - | |
|
| 5.9859 | 3400 | 0.0 | - | |
|
| 6.0 | 3408 | - | 8.9528 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.39.0 |
|
- PyTorch: 2.3.1+cu118 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |