leaderboard-pr-bot's picture
Adding Evaluation Results
c550f91 verified
|
raw
history blame
4.91 kB
---
license: mit
tags:
- merge
- mergekit
- lazymergekit
- bardsai/jaskier-7b-dpo-v6.1
- CultriX/NeuralTrix-7B-dpo
base_model:
- bardsai/jaskier-7b-dpo-v6.1
- CultriX/NeuralTrix-7B-dpo
model-index:
- name: NeuralJaskier-7b-dpo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=u66u/NeuralJaskier-7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.87
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=u66u/NeuralJaskier-7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.49
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=u66u/NeuralJaskier-7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 78.42
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=u66u/NeuralJaskier-7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=u66u/NeuralJaskier-7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.52
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=u66u/NeuralJaskier-7b-dpo
name: Open LLM Leaderboard
---
# NeuralJaskier-7b-dpo
NeuralJaskier-7b-dpo is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [bardsai/jaskier-7b-dpo-v6.1](https://huggingface.co/bardsai/jaskier-7b-dpo-v6.1)
* [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: bardsai/jaskier-7b-dpo-v6.1
layer_range: [0, 32]
- model: CultriX/NeuralTrix-7B-dpo
layer_range: [0, 32]
merge_method: slerp
base_model: bardsai/jaskier-7b-dpo-v6.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "u66u/NeuralJaskier-7b-dpo"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_u66u__NeuralJaskier-7b-dpo)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.22|
|AI2 Reasoning Challenge (25-Shot)|71.59|
|HellaSwag (10-Shot) |88.87|
|MMLU (5-Shot) |64.49|
|TruthfulQA (0-shot) |78.42|
|Winogrande (5-shot) |84.45|
|GSM8k (5-shot) |69.52|