ucsahin's picture
Update README.md
0ed06e2 verified
|
raw
history blame
3.05 kB
metadata
license: mit
base_model: microsoft/Florence-2-large-ft
tags:
  - image-text-to-text
  - generated_from_trainer
model-index:
  - name: Florence-2-large-TableDetection
    results: []
datasets:
  - ucsahin/pubtables-detection-1500-samples
pipeline_tag: image-text-to-text

Florence-2-large-TableDetection

This model is a fine-tuned version of microsoft/Florence-2-large-ft on ucsahin/pubtables-detection-1500-samples dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7601

microsoft/Florence-2-large-ft can detect various objects in zero-shot setting with the task prompt "<OD>". Please check Florence-2-large sample inference for how to use Florence-2 model in inference. However, the ft-base model is not able to detect tables on a given image.

The following Colab notebook showcases how you can finetune the model with your custom data to detect objects.

Florence2-Object Detection-Finetuning-HF-Trainer.ipynb

Model description

  • This model is a multimodal language model fine-tuned for the task of detecting tables in images given textual prompts. The model utilizes a combination of image and text inputs to predict bounding boxes around tables within the provided images.
  • The primary purpose of this model is to assist in automating the process of table detection within images. It can be utilized in various applications such as document processing, data extraction, and image analysis, where identifying tables within images is essential.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
1.3199 1.0 169 1.0372
0.7922 2.0 338 0.9169
0.6824 3.0 507 0.8411
0.6109 4.0 676 0.8168
0.5752 5.0 845 0.7915
0.5605 6.0 1014 0.7862
0.5291 7.0 1183 0.7740
0.517 8.0 1352 0.7683
0.5139 9.0 1521 0.7642
0.5005 10.0 1690 0.7601

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1