|
--- |
|
language: Chinese |
|
datasets: CLUECorpusSmall |
|
widget: |
|
- text: "中国的首都是[MASK]京" |
|
|
|
|
|
--- |
|
|
|
|
|
# Chinese ALBERT |
|
|
|
## Model description |
|
|
|
This is the set of Chinese ALBERT models pre-trained by UER-py. You can download the model either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below: |
|
|
|
| | Link | |
|
| -------- | :-----------------------: | |
|
| **ALBERT-Base** | [**L=12/H=768 (Base)**][base] | |
|
| **ALBERT-Large** | [**L=24/H=1024 (Large)**][large] | |
|
|
|
## How to use |
|
|
|
You can use the model directly with a pipeline for text generation: |
|
|
|
```python |
|
>>> from transformers import BertTokenizer, AlbertForMaskedLM, FillMaskPipeline |
|
>>> tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall") |
|
>>> model = AlbertForMaskedLM.from_pretrained("uer/albert-base-chinese-cluecorpussmall") |
|
>>> unmasker = FillMaskPipeline(model, tokenizer) |
|
>>> unmasker("中国的首都是[MASK]京。") |
|
[ |
|
{'sequence': '中 国 的 首 都 是 北 京 。', |
|
'score': 0.8528032898902893, |
|
'token': 1266, |
|
'token_str': '北'}, |
|
{'sequence': '中 国 的 首 都 是 南 京 。', |
|
'score': 0.07667620480060577, |
|
'token': 1298, |
|
'token_str': '南'}, |
|
{'sequence': '中 国 的 首 都 是 东 京 。', |
|
'score': 0.020440367981791496, |
|
'token': 691, |
|
'token_str': '东'}, |
|
{'sequence': '中 国 的 首 都 是 维 京 。', |
|
'score': 0.010197942145168781, |
|
'token': 5335, |
|
'token_str': '维'}, |
|
{'sequence': '中 国 的 首 都 是 汴 京 。', |
|
'score': 0.0075391442514956, |
|
'token': 3745, |
|
'token_str': '汴'} |
|
] |
|
|
|
``` |
|
|
|
Here is how to use this model to get the features of a given text in PyTorch: |
|
|
|
```python |
|
from transformers import BertTokenizer, AlbertModel |
|
tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall") |
|
model = AlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall") |
|
text = "用你喜欢的任何文本替换我。" |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
``` |
|
|
|
and in TensorFlow: |
|
|
|
```python |
|
from transformers import BertTokenizer, TFAlbertModel |
|
tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall") |
|
model = TFAlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall") |
|
text = "用你喜欢的任何文本替换我。" |
|
encoded_input = tokenizer(text, return_tensors='tf') |
|
output = model(encoded_input) |
|
``` |
|
|
|
## Training data |
|
|
|
[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. |
|
|
|
## Training procedure |
|
|
|
The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. |
|
|
|
Taking the case of ALBERT-Base |
|
|
|
Stage1: |
|
|
|
``` |
|
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--dataset_path cluecorpussmall_albert_seq128_dataset.pt \ |
|
--seq_length 128 --processes_num 32 --data_processor albert |
|
``` |
|
|
|
``` |
|
python3 pretrain.py --dataset_path cluecorpussmall_albert_seq128_dataset.pt \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--config_path models/albert/base_config.json \ |
|
--output_model_path models/cluecorpussmall_albert_base_seq128_model.bin \ |
|
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ |
|
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ |
|
--learning_rate 1e-4 --batch_size 64 |
|
``` |
|
|
|
Stage2: |
|
|
|
``` |
|
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--dataset_path cluecorpussmall_albert_seq512_dataset.pt \ |
|
--seq_length 512 --processes_num 32 --data_processor albert |
|
``` |
|
|
|
``` |
|
python3 pretrain.py --dataset_path cluecorpussmall_albert_seq512_dataset.pt \ |
|
--vocab_path models/google_zh_vocab.txt \ |
|
--pretrained_model_path models/cluecorpussmall_albert_base_seq128_model.bin-1000000 \ |
|
--config_path models/albert/base_config.json \ |
|
--output_model_path models/cluecorpussmall_albert_base_seq512_model.bin \ |
|
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ |
|
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ |
|
--learning_rate 1e-4 --batch_size 64 |
|
``` |
|
|
|
Finally, we convert the pre-trained model into Huggingface's format: |
|
|
|
``` |
|
python3 scripts/convert_albert_from_uer_to_huggingface.py --input_model_path cluecorpussmall_albert_base_seq512_model.bin-250000 \ |
|
--output_model_path pytorch_model.bin |
|
``` |
|
|
|
### BibTeX entry and citation info |
|
|
|
``` |
|
@article{lan2019albert, |
|
title={Albert: A lite bert for self-supervised learning of language representations}, |
|
author={Lan, Zhenzhong and Chen, Mingda and Goodman, Sebastian and Gimpel, Kevin and Sharma, Piyush and Soricut, Radu}, |
|
journal={arXiv preprint arXiv:1909.11942}, |
|
year={2019} |
|
} |
|
|
|
@article{zhao2019uer, |
|
title={UER: An Open-Source Toolkit for Pre-training Models}, |
|
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, |
|
journal={EMNLP-IJCNLP 2019}, |
|
pages={241}, |
|
year={2019} |
|
} |
|
``` |
|
|
|
[base]:https://huggingface.co/uer/albert-base-chinese-cluecorpussmall |
|
[large]:https://huggingface.co/uer/albert-large-chinese-cluecorpussmall |