uer's picture
Update README.md
f93fe5f
|
raw
history blame
3.32 kB
metadata
language: Chinese
widget:
  - text: '[CLS]当是时'

Chinese Ancient GPT2 Model

Model description

The model is used to generate ancient Chinese. You can download the model either from the GPT2-Chinese Github page, or via HuggingFace from the link gpt2-chinese-ancient

How to use

You can use the model directly with a pipeline for text generation:

>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-ancient")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-ancient")
>>> text_generator = TextGenerationPipeline(model, tokenizer)   
>>> text_generator("当是时", max_length=100, do_sample=True)
    [{'generated_text': '[CLS]当是时 所 议 者 不 为 无 据 , 况 亦 在 之 列 乎 ? 然 则 今 日 之 事 , 所 当 思 者 在 何 ? 欲 求 国 是 于 天 下 , 莫 在 于 得 人 。 臣 以 为 求 人 之 法 , 不 在 多 用 官 一 途 。 诚 使 得 才 者 众 , 人 才 者 优 , 则 治 所 当 得 , 而 不 事 于 官 者 , 人 才 乃 其 常 也 。 所 当 讲 者'}]

Training data

Training data contains 3,000,000 ancient Chinese which are collected by daizhigev20.

Training procedure

The model is pre-trained by UER-py on Tencent Cloud TI-ONE. We pre-train 500,000 steps with a sequence length of 320.

python3 preprocess.py --corpus_path corpora/ancient_chinese.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path ancient_chinese_dataset.pt --processes_num 16 \
                      --seq_length 320 --target lm
python3 pretrain.py --dataset_path ancient_chinese_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --output_model_path models/ancient_chinese_base_model.bin \
                    --config_path models/bert_base_config.json \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 500000 --save_checkpoint_steps 100000 --report_steps 10000 \
                    --learning_rate 5e-4 --batch_size 32 \
                    --embedding word_pos --remove_embedding_layernorm \
                    --encoder transformer --mask causal --layernorm_positioning pre \
                    --target lm --tie_weight

Finally, we convert the pre-trained model into Huggingface's format:

python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path ancient_chinese_base_model.bin-500000 \
                                                        --output_model_path pytorch_model.bin \
                                                        --layers_num 12

BibTeX entry and citation info

@article{zhao2019uer,
  title={UER: An Open-Source Toolkit for Pre-training Models},
  author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
  journal={EMNLP-IJCNLP 2019},
  pages={241},
  year={2019}
}