|
--- |
|
license: mit |
|
--- |
|
|
|
# BLIPNet Model |
|
|
|
This is the structure of the BLIPNet model. You can load the model with this structure, or you can create a bigger model for your specific task. |
|
|
|
## Model Structure |
|
|
|
```python |
|
import torch |
|
import torch.nn as nn |
|
from transformers import BlipForConditionalGeneration |
|
|
|
class BLIPNet(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
# Generation Model |
|
self.model = BlipForConditionalGeneration.from_pretrained("Salesforceblip-image-captioning-base", cache_dir="model") |
|
# Same with https://huggingface.co/uf-aice-lab/BLIP-Math |
|
self.ebd_dim = 443136 |
|
|
|
# Classification Model |
|
fc_dim = 64 # You can choose a higher number for better performance, for example, 1024. |
|
self.head = nn.Sequential( |
|
nn.Linear(self.ebd_dim, fc_dim), |
|
nn.ReLU(), |
|
) |
|
self.output1= nn.Linear(fc_dim, 5) # 5 classes |
|
|
|
def forward(self, pixel_values, input_ids): |
|
outputs = self.model(input_ids=input_ids, pixel_values=pixel_values, labels=input_ids) |
|
image_text_embeds = self.model.vision_model(pixel_values, return_dict=True).last_hidden_state |
|
image_text_embeds = self.head(image_text_embeds.view(-1, self.ebd_dim)) |
|
|
|
# A classification model is based on embeddings from a generative model to leverage BLIP's powerful image-text encoding capabilities. |
|
logits = self.output1(image_text_embeds) |
|
|
|
# generated text, probabilities of classification |
|
return outputs, logits |
|
|
|
model = BLIPNet() |
|
model.load_state_dict(torch.load("BLILP_Generation_Classification.bin"), strict=False) |
|
|
|
You need to input the sample in the same way as shown in the example provided at: https://huggingface.co/uf-aice-lab/BLIP-Math |
|
Then you can get the generated text and classification score simultaneously. |