amharic-hate-speech / README.md
seyyaw's picture
Update README.md
6a463d6 verified
metadata
license: mit
base_model: uhhlt/am-roberta
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: am-roberta-finetuned
    results: []

amharic-hate-speech

This model is a fine-tuned version of uhhlt/am-roberta on an AmahricHateSpeechRANL dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6437
  • Accuracy: 0.7373
  • Precision: 0.7216
  • Recall: 0.7149
  • F1: 0.7180

How to use it

from transformers import pipeline
amhate_classifier = pipeline("text-classification", model="uhhlt/amharic-hate-speech")
amhate_classifier(["🌳☘️ πŸŒ³β˜˜οΈαˆˆαˆαŒ… αˆαŒ… α‹¨αˆšα‰°αˆ‹αˆˆα α‹˜αˆ˜αŠ• α‰°αˆ»αŒ‹αˆͺ αŠ’αŠ•α‰¨αˆ΅α‰΅αˆ˜αŠ•α‰΅ !!!🌳☘️ 🌳☘️ፒ", 
                  "αŠ αŠ•α‰° αŠ αˆαŠ• αˆαŠ• α‹¨αˆšαˆ‰αˆ… αŠαˆ…? αŒαŠ‘α‹ αŠ αˆαˆ‹αŠͺ αŠ¨αˆ˜αˆ†αŠ• α‹«α‹΅αŠαŠ•α’ αˆ°α‹αŠ• α‹«αŠ­αˆ ፍ጑ር αŠ₯α‹¨αˆžα‰° αˆˆα‹›α α‹­αˆ„αŠ• α‹«αŠ­αˆ αˆ›αˆαˆˆαŠ­ αŒ€αŠαŠαŠα‰΅ αŠ α‹­αˆ˜αˆ΅αˆαˆ ፒ α‹αŠ– 100% α‹«αˆΈαŠ•α‹αˆ",
                  "α‰ αŠ αŠ“α‰΅αˆ… α‰°α‰°αŠ¨αˆ α‰£αŠ•α‹³ α‰°αˆ‹αˆ‹αŠͺ"])

Output

[{'label': 'normal', 'score': 0.8840981721878052},
 {'label': 'hate', 'score': 0.519339382648468},
 {'label': 'hate', 'score': 0.9630571007728577}]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.8441 1.0 94 0.6699 0.7053 0.6913 0.6640 0.6737
0.6199 2.0 188 0.6505 0.72 0.7060 0.6995 0.6994
0.5295 3.0 282 0.6240 0.736 0.7201 0.7125 0.7159
0.4614 4.0 376 0.6437 0.7373 0.7216 0.7149 0.7180
0.3955 5.0 470 0.6922 0.7207 0.7001 0.7072 0.7031
0.3529 6.0 564 0.6995 0.7247 0.7050 0.7029 0.7039
0.3076 7.0 658 0.7352 0.7253 0.7067 0.7000 0.7031
0.2863 8.0 752 0.7470 0.7227 0.7019 0.6983 0.7000

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3