T5_256tokens_advice
This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6567
- Accuracy: 0.7887
- F1: 0.7898
- Precision: 0.7910
- Recall: 0.7887
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5424 | 1.0 | 795 | 0.4731 | 0.7572 | 0.7230 | 0.7396 | 0.7572 |
0.4101 | 2.0 | 1590 | 0.4121 | 0.7918 | 0.7943 | 0.7979 | 0.7918 |
0.3966 | 3.0 | 2385 | 0.5028 | 0.7899 | 0.7908 | 0.7917 | 0.7899 |
0.1619 | 4.0 | 3180 | 0.5488 | 0.7962 | 0.7943 | 0.7929 | 0.7962 |
0.3333 | 5.0 | 3975 | 0.6567 | 0.7887 | 0.7898 | 0.7910 | 0.7887 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 49
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for umangsharmacs/T5_256tokens_advice
Base model
google-t5/t5-base