metadata
library_name: transformers
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: T5_256tokens_gossip
results: []
T5_256tokens_gossip
This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6024
- Accuracy: 0.9057
- F1: 0.9000
- Precision: 0.8962
- Recall: 0.9057
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.2489 | 1.0 | 1590 | 0.3115 | 0.8994 | 0.8878 | 0.8815 | 0.8994 |
0.0452 | 2.0 | 3180 | 0.3244 | 0.9201 | 0.9009 | 0.9103 | 0.9201 |
0.0508 | 3.0 | 4770 | 0.4210 | 0.9107 | 0.9039 | 0.9001 | 0.9107 |
0.0269 | 4.0 | 6360 | 0.4959 | 0.9113 | 0.9013 | 0.8974 | 0.9113 |
0.1621 | 5.0 | 7950 | 0.6024 | 0.9057 | 0.9000 | 0.8962 | 0.9057 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0