|
--- |
|
library_name: transformers |
|
datasets: |
|
- umarigan/all_nli_tr |
|
language: |
|
- tr |
|
pipeline_tag: sentence-similarity |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Load the model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("umarigan/distilbert-turkish-sentence-similarity") |
|
# Run inference |
|
sentences = [ |
|
'Bu yıl tatile Antalya'ya gideceğiz.', |
|
'Yazın Antalya'da tatil yapacağız.' |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [2, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [2, 2] |
|
``` |
|
|