segformer-b3-finetuned-segments-outputs
This model is a fine-tuned version of nvidia/mit-b3 on the unreal-hug/REAL_DATASET_SEG_401_6_lbls dataset. It achieves the following results on the evaluation set:
- Loss: 0.3002
- Mean Iou: 0.2829
- Mean Accuracy: 0.3326
- Overall Accuracy: 0.6026
- Accuracy Unlabeled: nan
- Accuracy Lv: 0.7852
- Accuracy Rv: 0.5699
- Accuracy Ra: 0.5380
- Accuracy La: 0.6208
- Accuracy Vs: 0.0
- Accuracy As: 0.0
- Accuracy Mk: 0.0004
- Accuracy Tk: nan
- Accuracy Asd: 0.1783
- Accuracy Vsd: 0.1873
- Accuracy Ak: 0.4458
- Iou Unlabeled: 0.0
- Iou Lv: 0.7310
- Iou Rv: 0.5182
- Iou Ra: 0.5178
- Iou La: 0.5526
- Iou Vs: 0.0
- Iou As: 0.0
- Iou Mk: 0.0004
- Iou Tk: nan
- Iou Asd: 0.1728
- Iou Vsd: 0.1827
- Iou Ak: 0.4361
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lv | Accuracy Rv | Accuracy Ra | Accuracy La | Accuracy Vs | Accuracy As | Accuracy Mk | Accuracy Tk | Accuracy Asd | Accuracy Vsd | Accuracy Ak | Iou Unlabeled | Iou Lv | Iou Rv | Iou Ra | Iou La | Iou Vs | Iou As | Iou Mk | Iou Tk | Iou Asd | Iou Vsd | Iou Ak |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4253 | 0.62 | 100 | 0.4599 | 0.1588 | 0.2152 | 0.4965 | nan | 0.8879 | 0.0778 | 0.1004 | 0.5637 | 0.0 | 0.0 | 0.0 | nan | 0.0120 | 0.0509 | 0.4590 | 0.0 | 0.6799 | 0.0770 | 0.0985 | 0.3899 | 0.0 | 0.0 | 0.0 | nan | 0.0120 | 0.0509 | 0.4386 |
0.3839 | 1.25 | 200 | 0.3598 | 0.2325 | 0.2929 | 0.5740 | nan | 0.8720 | 0.4761 | 0.6272 | 0.2194 | 0.0 | 0.0 | 0.0 | nan | 0.0102 | 0.2038 | 0.5201 | 0.0 | 0.8020 | 0.4259 | 0.4142 | 0.2085 | 0.0 | 0.0 | 0.0 | nan | 0.0102 | 0.1964 | 0.4999 |
0.4634 | 1.88 | 300 | 0.3361 | 0.3031 | 0.3870 | 0.6197 | nan | 0.7362 | 0.7347 | 0.2986 | 0.7550 | 0.0 | 0.0 | 0.0 | nan | 0.3070 | 0.4629 | 0.5752 | 0.0 | 0.6984 | 0.5947 | 0.2894 | 0.5089 | 0.0 | 0.0 | 0.0 | nan | 0.2756 | 0.4265 | 0.5410 |
0.147 | 2.5 | 400 | 0.3123 | 0.3081 | 0.3772 | 0.5772 | nan | 0.6525 | 0.4740 | 0.6282 | 0.5966 | 0.0 | 0.0 | 0.0002 | nan | 0.2846 | 0.5934 | 0.5425 | 0.0 | 0.6202 | 0.4429 | 0.5296 | 0.5133 | 0.0 | 0.0 | 0.0002 | nan | 0.2597 | 0.5196 | 0.5033 |
0.2044 | 3.12 | 500 | 0.3104 | 0.2918 | 0.3459 | 0.5719 | nan | 0.7327 | 0.5989 | 0.5243 | 0.4087 | 0.0 | 0.0 | 0.0046 | nan | 0.0585 | 0.5632 | 0.5678 | 0.0 | 0.6887 | 0.5466 | 0.4931 | 0.3770 | 0.0 | 0.0 | 0.0045 | nan | 0.0583 | 0.4945 | 0.5471 |
0.3223 | 3.75 | 600 | 0.3078 | 0.3341 | 0.4038 | 0.6417 | nan | 0.6870 | 0.5831 | 0.7323 | 0.7609 | 0.0019 | 0.0 | 0.0267 | nan | 0.2290 | 0.4286 | 0.5887 | 0.0 | 0.6482 | 0.5377 | 0.6608 | 0.6435 | 0.0019 | 0.0 | 0.0255 | nan | 0.2199 | 0.3893 | 0.5488 |
0.275 | 4.38 | 700 | 0.3081 | 0.3007 | 0.3562 | 0.5801 | nan | 0.7267 | 0.3140 | 0.5325 | 0.6536 | 0.0024 | 0.0 | 0.0 | nan | 0.2228 | 0.5105 | 0.5992 | 0.0 | 0.6833 | 0.2982 | 0.5065 | 0.5827 | 0.0024 | 0.0 | 0.0 | nan | 0.2110 | 0.4492 | 0.5741 |
0.2679 | 5.0 | 800 | 0.3002 | 0.2829 | 0.3326 | 0.6026 | nan | 0.7852 | 0.5699 | 0.5380 | 0.6208 | 0.0 | 0.0 | 0.0004 | nan | 0.1783 | 0.1873 | 0.4458 | 0.0 | 0.7310 | 0.5182 | 0.5178 | 0.5526 | 0.0 | 0.0 | 0.0004 | nan | 0.1728 | 0.1827 | 0.4361 |
0.3721 | 5.62 | 900 | 0.3100 | 0.3449 | 0.4111 | 0.6774 | nan | 0.8066 | 0.6839 | 0.6907 | 0.6722 | 0.0004 | 0.0 | 0.0002 | nan | 0.2097 | 0.5078 | 0.5401 | 0.0 | 0.7558 | 0.6115 | 0.6389 | 0.6063 | 0.0004 | 0.0 | 0.0002 | nan | 0.2043 | 0.4613 | 0.5147 |
0.2418 | 6.25 | 1000 | 0.3161 | 0.3769 | 0.4608 | 0.7076 | nan | 0.7978 | 0.6939 | 0.6991 | 0.7553 | 0.1402 | 0.0 | 0.0 | nan | 0.2148 | 0.6464 | 0.6604 | 0.0 | 0.7465 | 0.6110 | 0.6455 | 0.6508 | 0.1308 | 0.0 | 0.0 | nan | 0.2046 | 0.5357 | 0.6210 |
0.5517 | 6.88 | 1100 | 0.3622 | 0.1738 | 0.2011 | 0.3603 | nan | 0.5002 | 0.2451 | 0.4020 | 0.3224 | 0.0287 | 0.0 | 0.0143 | nan | 0.1725 | 0.1302 | 0.1956 | 0.0 | 0.4829 | 0.2368 | 0.3610 | 0.3027 | 0.0279 | 0.0 | 0.0139 | nan | 0.1660 | 0.1262 | 0.1944 |
0.2611 | 7.5 | 1200 | 0.3240 | 0.3572 | 0.4346 | 0.6530 | nan | 0.7703 | 0.6570 | 0.6721 | 0.5853 | 0.1717 | 0.0 | 0.0561 | nan | 0.3176 | 0.5672 | 0.5490 | 0.0 | 0.7190 | 0.5879 | 0.5838 | 0.5265 | 0.1576 | 0.0 | 0.0520 | nan | 0.2832 | 0.4852 | 0.5341 |
0.2422 | 8.12 | 1300 | 0.3206 | 0.3382 | 0.4095 | 0.6283 | nan | 0.7598 | 0.5413 | 0.6799 | 0.5747 | 0.1393 | 0.0 | 0.1071 | nan | 0.2918 | 0.4583 | 0.5432 | 0.0 | 0.7139 | 0.4894 | 0.5792 | 0.5128 | 0.1306 | 0.0 | 0.0900 | nan | 0.2601 | 0.4134 | 0.5313 |
0.2 | 8.75 | 1400 | 0.3110 | 0.3299 | 0.3976 | 0.5977 | nan | 0.6984 | 0.4791 | 0.6668 | 0.6132 | 0.2240 | 0.0 | 0.0000 | nan | 0.3035 | 0.4994 | 0.4917 | 0.0 | 0.6626 | 0.4281 | 0.5904 | 0.5516 | 0.2026 | 0.0 | 0.0000 | nan | 0.2767 | 0.4409 | 0.4754 |
0.1095 | 9.38 | 1500 | 0.3375 | 0.2732 | 0.3235 | 0.5205 | nan | 0.5957 | 0.4483 | 0.5939 | 0.5724 | 0.1094 | 0.0 | 0.0005 | nan | 0.2502 | 0.2124 | 0.4518 | 0.0 | 0.5689 | 0.4004 | 0.5432 | 0.5122 | 0.1038 | 0.0 | 0.0005 | nan | 0.2293 | 0.2068 | 0.4398 |
0.2373 | 10.0 | 1600 | 0.3453 | 0.3066 | 0.3658 | 0.5723 | nan | 0.6940 | 0.5507 | 0.5989 | 0.5415 | 0.2547 | 0.0 | 0.0 | nan | 0.1549 | 0.4018 | 0.4611 | 0.0 | 0.6560 | 0.5007 | 0.5402 | 0.4888 | 0.2231 | 0.0 | 0.0 | nan | 0.1519 | 0.3680 | 0.4442 |
0.0756 | 10.62 | 1700 | 0.3413 | 0.3699 | 0.4457 | 0.6868 | nan | 0.7934 | 0.6758 | 0.6577 | 0.7146 | 0.2091 | 0.0 | 0.0075 | nan | 0.2043 | 0.5427 | 0.6520 | 0.0 | 0.7465 | 0.6060 | 0.6120 | 0.6207 | 0.1863 | 0.0 | 0.0071 | nan | 0.1908 | 0.4923 | 0.6071 |
0.1072 | 11.25 | 1800 | 0.3736 | 0.2889 | 0.3434 | 0.5518 | nan | 0.6798 | 0.5118 | 0.6135 | 0.5297 | 0.1772 | 0.0 | 0.0195 | nan | 0.1954 | 0.3432 | 0.3636 | 0.0 | 0.6444 | 0.4854 | 0.5561 | 0.4786 | 0.1539 | 0.0 | 0.0183 | nan | 0.1788 | 0.3106 | 0.3523 |
0.1216 | 11.88 | 1900 | 0.3648 | 0.3248 | 0.3879 | 0.6056 | nan | 0.7039 | 0.5606 | 0.6138 | 0.6566 | 0.1644 | 0.0 | 0.0080 | nan | 0.2637 | 0.3991 | 0.5087 | 0.0 | 0.6665 | 0.5153 | 0.5725 | 0.5704 | 0.1453 | 0.0 | 0.0074 | nan | 0.2402 | 0.3677 | 0.4877 |
0.1401 | 12.5 | 2000 | 0.3436 | 0.3537 | 0.4292 | 0.6524 | nan | 0.7521 | 0.6339 | 0.6030 | 0.7209 | 0.1334 | 0.0 | 0.0988 | nan | 0.3603 | 0.4304 | 0.5592 | 0.0 | 0.7059 | 0.5504 | 0.5546 | 0.6319 | 0.1235 | 0.0 | 0.0846 | nan | 0.3103 | 0.3901 | 0.5391 |
0.1436 | 13.12 | 2100 | 0.3869 | 0.3156 | 0.3744 | 0.5828 | nan | 0.7025 | 0.4233 | 0.5510 | 0.6780 | 0.1886 | 0.0 | 0.0510 | nan | 0.2666 | 0.3543 | 0.5291 | 0.0 | 0.6640 | 0.3923 | 0.5214 | 0.5994 | 0.1688 | 0.0 | 0.0440 | nan | 0.2386 | 0.3359 | 0.5075 |
0.0907 | 13.75 | 2200 | 0.3739 | 0.3237 | 0.3853 | 0.6046 | nan | 0.7534 | 0.5218 | 0.6138 | 0.5515 | 0.2576 | 0.0 | 0.0377 | nan | 0.2211 | 0.3392 | 0.5574 | 0.0 | 0.7090 | 0.4937 | 0.5742 | 0.4980 | 0.2077 | 0.0 | 0.0343 | nan | 0.2079 | 0.3158 | 0.5206 |
0.147 | 14.38 | 2300 | 0.3751 | 0.3667 | 0.4460 | 0.6265 | nan | 0.6614 | 0.6418 | 0.5923 | 0.7208 | 0.2728 | 0.0 | 0.0884 | nan | 0.2801 | 0.5884 | 0.6142 | 0.0 | 0.6267 | 0.5779 | 0.5584 | 0.6181 | 0.2302 | 0.0 | 0.0739 | nan | 0.2553 | 0.5113 | 0.5816 |
0.0612 | 15.0 | 2400 | 0.3993 | 0.3152 | 0.3777 | 0.5802 | nan | 0.6818 | 0.5538 | 0.6054 | 0.5973 | 0.1225 | 0.0 | 0.0486 | nan | 0.3157 | 0.4393 | 0.4124 | 0.0 | 0.6439 | 0.5163 | 0.5435 | 0.5331 | 0.1134 | 0.0 | 0.0438 | nan | 0.2698 | 0.3983 | 0.4056 |
0.0854 | 15.62 | 2500 | 0.4168 | 0.3039 | 0.3621 | 0.5569 | nan | 0.6689 | 0.4421 | 0.5384 | 0.5871 | 0.1719 | 0.0 | 0.0233 | nan | 0.2696 | 0.3985 | 0.5212 | 0.0 | 0.6317 | 0.4223 | 0.4957 | 0.5199 | 0.1508 | 0.0 | 0.0213 | nan | 0.2457 | 0.3702 | 0.4855 |
0.0806 | 16.25 | 2600 | 0.4017 | 0.3460 | 0.4169 | 0.6201 | nan | 0.7083 | 0.6388 | 0.6258 | 0.5904 | 0.1749 | 0.0 | 0.1096 | nan | 0.2301 | 0.4998 | 0.5915 | 0.0 | 0.6659 | 0.5768 | 0.5736 | 0.5358 | 0.1552 | 0.0 | 0.0903 | nan | 0.2099 | 0.4466 | 0.5522 |
0.137 | 16.88 | 2700 | 0.4268 | 0.2834 | 0.3348 | 0.5474 | nan | 0.6984 | 0.4311 | 0.5213 | 0.5677 | 0.0688 | 0.0 | 0.0219 | nan | 0.1758 | 0.4672 | 0.3961 | 0.0 | 0.6564 | 0.4077 | 0.4842 | 0.5061 | 0.0638 | 0.0 | 0.0208 | nan | 0.1653 | 0.4276 | 0.3855 |
0.0375 | 17.5 | 2800 | 0.4117 | 0.2816 | 0.3339 | 0.5291 | nan | 0.6131 | 0.4906 | 0.6136 | 0.5158 | 0.0881 | 0.0 | 0.0292 | nan | 0.2010 | 0.3391 | 0.4484 | 0.0 | 0.5803 | 0.4398 | 0.5575 | 0.4677 | 0.0809 | 0.0 | 0.0272 | nan | 0.1899 | 0.3179 | 0.4369 |
0.0654 | 18.12 | 2900 | 0.4334 | 0.3470 | 0.4190 | 0.6392 | nan | 0.7536 | 0.6040 | 0.6625 | 0.6205 | 0.1722 | 0.0 | 0.1006 | nan | 0.3133 | 0.4067 | 0.5566 | 0.0 | 0.7052 | 0.5599 | 0.5923 | 0.5496 | 0.1515 | 0.0 | 0.0809 | nan | 0.2670 | 0.3782 | 0.5320 |
0.0759 | 18.75 | 3000 | 0.4226 | 0.3140 | 0.3770 | 0.5661 | nan | 0.6390 | 0.5546 | 0.6119 | 0.5289 | 0.1559 | 0.0 | 0.0158 | nan | 0.2478 | 0.4546 | 0.5611 | 0.0 | 0.6063 | 0.5000 | 0.5449 | 0.4774 | 0.1370 | 0.0 | 0.0148 | nan | 0.2238 | 0.4182 | 0.5319 |
0.1047 | 19.38 | 3100 | 0.4350 | 0.3058 | 0.3639 | 0.5608 | nan | 0.6803 | 0.5207 | 0.5750 | 0.5243 | 0.1947 | 0.0 | 0.0335 | nan | 0.2706 | 0.3744 | 0.4656 | 0.0 | 0.6424 | 0.4914 | 0.5193 | 0.4712 | 0.1700 | 0.0 | 0.0307 | nan | 0.2409 | 0.3498 | 0.4479 |
0.146 | 20.0 | 3200 | 0.4320 | 0.3138 | 0.3796 | 0.5634 | nan | 0.6526 | 0.4673 | 0.5958 | 0.5859 | 0.2021 | 0.0 | 0.0287 | nan | 0.2886 | 0.4822 | 0.4933 | 0.0 | 0.6188 | 0.4135 | 0.5438 | 0.5232 | 0.1710 | 0.0 | 0.0244 | nan | 0.2502 | 0.4367 | 0.4706 |
0.1012 | 20.62 | 3300 | 0.4231 | 0.3294 | 0.3967 | 0.5944 | nan | 0.6824 | 0.5358 | 0.6163 | 0.5851 | 0.1819 | 0.0 | 0.0243 | nan | 0.3027 | 0.4514 | 0.5866 | 0.0 | 0.6449 | 0.4899 | 0.5645 | 0.5214 | 0.1589 | 0.0 | 0.0213 | nan | 0.2605 | 0.4193 | 0.5423 |
0.1004 | 21.25 | 3400 | 0.4312 | 0.3369 | 0.4078 | 0.6181 | nan | 0.7167 | 0.5900 | 0.6539 | 0.5973 | 0.1753 | 0.0 | 0.0330 | nan | 0.2538 | 0.5161 | 0.5419 | 0.0 | 0.6767 | 0.5234 | 0.5867 | 0.5300 | 0.1515 | 0.0 | 0.0276 | nan | 0.2273 | 0.4649 | 0.5176 |
0.0837 | 21.88 | 3500 | 0.4385 | 0.3202 | 0.3844 | 0.5932 | nan | 0.6960 | 0.5322 | 0.6045 | 0.5847 | 0.1779 | 0.0 | 0.0238 | nan | 0.2458 | 0.3876 | 0.5910 | 0.0 | 0.6549 | 0.4828 | 0.5517 | 0.5181 | 0.1554 | 0.0 | 0.0210 | nan | 0.2195 | 0.3639 | 0.5549 |
0.1212 | 22.5 | 3600 | 0.4473 | 0.3209 | 0.3857 | 0.5969 | nan | 0.7202 | 0.5315 | 0.5947 | 0.5830 | 0.1908 | 0.0 | 0.0382 | nan | 0.2426 | 0.4183 | 0.5379 | 0.0 | 0.6752 | 0.4757 | 0.5356 | 0.5134 | 0.1673 | 0.0 | 0.0335 | nan | 0.2203 | 0.3885 | 0.5200 |
0.0698 | 23.12 | 3700 | 0.4587 | 0.3033 | 0.3629 | 0.5581 | nan | 0.6604 | 0.5113 | 0.5777 | 0.5497 | 0.1981 | 0.0 | 0.0128 | nan | 0.2450 | 0.3808 | 0.4930 | 0.0 | 0.6252 | 0.4590 | 0.5288 | 0.4903 | 0.1688 | 0.0 | 0.0121 | nan | 0.2188 | 0.3569 | 0.4760 |
0.1282 | 23.75 | 3800 | 0.4509 | 0.3262 | 0.3922 | 0.5981 | nan | 0.6936 | 0.5414 | 0.6098 | 0.6114 | 0.1966 | 0.0 | 0.0250 | nan | 0.2791 | 0.3966 | 0.5680 | 0.0 | 0.6536 | 0.4908 | 0.5585 | 0.5406 | 0.1666 | 0.0 | 0.0219 | nan | 0.2447 | 0.3730 | 0.5383 |
0.0473 | 24.38 | 3900 | 0.4496 | 0.3334 | 0.4008 | 0.6063 | nan | 0.7051 | 0.5613 | 0.6237 | 0.5998 | 0.1989 | 0.0 | 0.0330 | nan | 0.2805 | 0.4479 | 0.5579 | 0.0 | 0.6636 | 0.5091 | 0.5670 | 0.5331 | 0.1698 | 0.0 | 0.0286 | nan | 0.2470 | 0.4166 | 0.5329 |
0.069 | 25.0 | 4000 | 0.4442 | 0.3404 | 0.4109 | 0.6170 | nan | 0.7116 | 0.5806 | 0.6320 | 0.6083 | 0.2084 | 0.0 | 0.0391 | nan | 0.2758 | 0.4698 | 0.5837 | 0.0 | 0.6682 | 0.5204 | 0.5734 | 0.5400 | 0.1764 | 0.0 | 0.0335 | nan | 0.2434 | 0.4342 | 0.5547 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for unreal-hug/segformer-b3-finetuned-segments-outputs
Base model
nvidia/mit-b3