DeepSeek-V3-GGUF / README.md
danielhanchen's picture
Update README.md
6b9a45d verified
metadata
base_model: deepseek-ai/DeepSeek-V3
language:
  - en
library_name: transformers
license: mit
tags:
  - deepseek_v3
  - deepseek
  - unsloth
  - transformers

See our collection for versions of Deepseek V3 including bf16 and original formats.

Quants Disk Size Details
Q2_K_XS 207GB Q2 everything, Q4 embed, Q6 lm_head
Q2_K_L 228GB Q3 down_proj Q2 rest, Q4 embed, Q6 lm_head
Q3_K_M 298GB Standard Q3_K_M
Q4_K_M 377GB Standard Q4_K_M
Q5_K_M 443GB Standard Q5_K_M
Q6_K 513GB Standard Q6_K
Q8_0 712GB Standard Q8_0
  1. Q2_K_XS should run ok in ~40GB of CPU / GPU VRAM with automatic llama.cpp offloading.
  2. Use K quantization (not V quantization)
  3. Do not forget about <|User|> and <|Assistant|> tokens! - Or use a chat template formatter
  4. Example with Q5_0 K quantized cache (V quantized cache doesn't work):
    ./llama.cpp/llama-cli
    --model unsloth/DeepSeek-V3-GGUF/DeepSeek-V3-Q2_K_XS/DeepSeek-V3-Q2_K_XS-00001-of-00005.gguf
    --cache-type-k q5_0
    --threads 16 
    --prompt '<|User|>What is 1+1?<|Assistant|>'
    
    Example output:
    The sum of 1 and 1 is **2**. Here's a simple step-by-step breakdown:
    
     1. **Start with the number 1.**
     2. **Add another 1 to it.**
     3. **The result is 2.**
    
     So, **1 + 1 = 2**. [end of text]
    
  5. If you have a GPU (RTX 4090 for example) with 24GB, you can offload 5 layers to the GPU for faster processing. If you have multiple GPUs, you can probably offload more layers.
    ./llama.cpp/llama-cli
    --model unsloth/DeepSeek-V3-GGUF/DeepSeek-V3-Q2_K_XS/DeepSeek-V3-Q2_K_XS-00001-of-00005.gguf
    --cache-type-k q5_0
    --threads 16 
    --prompt '<|User|>What is 1+1?<|Assistant|>'
    --n-gpu-layers 5
    
  6. Use q4_0 KV cache for even faster workloads at the expense of some degraded accuracy.

Finetune Llama 3.3, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!

We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb

unsloth/DeepSeek-V3-GGUF

For more details on the model, please go to Deepseek's original model card

✨ Finetune for Free

All notebooks are beginner friendly! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.

Unsloth supports Free Notebooks Performance Memory use
Llama-3.2 (3B) ▶️ Start on Colab 2.4x faster 58% less
Llama-3.2 (11B vision) ▶️ Start on Colab 2x faster 60% less
Qwen2 VL (7B) ▶️ Start on Colab 1.8x faster 60% less
Qwen2.5 (7B) ▶️ Start on Colab 2x faster 60% less
Llama-3.1 (8B) ▶️ Start on Colab 2.4x faster 58% less
Phi-3.5 (mini) ▶️ Start on Colab 2x faster 50% less
Gemma 2 (9B) ▶️ Start on Colab 2.4x faster 58% less
Mistral (7B) ▶️ Start on Colab 2.2x faster 62% less

Special Thanks

A huge thank you to the Deepseek team for creating and releasing these models.

Model Information

We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.

2. Model Summary


Architecture: Innovative Load Balancing Strategy and Training Objective

  • On top of the efficient architecture of DeepSeek-V2, we pioneer an auxiliary-loss-free strategy for load balancing, which minimizes the performance degradation that arises from encouraging load balancing.
  • We investigate a Multi-Token Prediction (MTP) objective and prove it beneficial to model performance. It can also be used for speculative decoding for inference acceleration.

Pre-Training: Towards Ultimate Training Efficiency

  • We design an FP8 mixed precision training framework and, for the first time, validate the feasibility and effectiveness of FP8 training on an extremely large-scale model.
  • Through co-design of algorithms, frameworks, and hardware, we overcome the communication bottleneck in cross-node MoE training, nearly achieving full computation-communication overlap.
    This significantly enhances our training efficiency and reduces the training costs, enabling us to further scale up the model size without additional overhead.
  • At an economical cost of only 2.664M H800 GPU hours, we complete the pre-training of DeepSeek-V3 on 14.8T tokens, producing the currently strongest open-source base model. The subsequent training stages after pre-training require only 0.1M GPU hours.

Post-Training: Knowledge Distillation from DeepSeek-R1

  • We introduce an innovative methodology to distill reasoning capabilities from the long-Chain-of-Thought (CoT) model, specifically from one of the DeepSeek R1 series models, into standard LLMs, particularly DeepSeek-V3. Our pipeline elegantly incorporates the verification and reflection patterns of R1 into DeepSeek-V3 and notably improves its reasoning performance. Meanwhile, we also maintain a control over the output style and length of DeepSeek-V3.

3. Model Downloads

Model #Total Params #Activated Params Context Length Download
DeepSeek-V3-Base 671B 37B 128K 🤗 HuggingFace
DeepSeek-V3 671B 37B 128K 🤗 HuggingFace

NOTE: The total size of DeepSeek-V3 models on HuggingFace is 685B, which includes 671B of the Main Model weights and 14B of the Multi-Token Prediction (MTP) Module weights.

To ensure optimal performance and flexibility, we have partnered with open-source communities and hardware vendors to provide multiple ways to run the model locally. For step-by-step guidance, check out Section 6: How_to Run_Locally.

For developers looking to dive deeper, we recommend exploring README_WEIGHTS.md for details on the Main Model weights and the Multi-Token Prediction (MTP) Modules. Please note that MTP support is currently under active development within the community, and we welcome your contributions and feedback.

4. Evaluation Results

Base Model

Standard Benchmarks

Benchmark (Metric) # Shots DeepSeek-V2 Qwen2.5 72B LLaMA3.1 405B DeepSeek-V3
Architecture - MoE Dense Dense MoE
# Activated Params - 21B 72B 405B 37B
# Total Params - 236B 72B 405B 671B
English Pile-test (BPB) - 0.606 0.638 0.542 0.548
BBH (EM) 3-shot 78.8 79.8 82.9 87.5
MMLU (Acc.) 5-shot 78.4 85.0 84.4 87.1
MMLU-Redux (Acc.) 5-shot 75.6 83.2 81.3 86.2
MMLU-Pro (Acc.) 5-shot 51.4 58.3 52.8 64.4
DROP (F1) 3-shot 80.4 80.6 86.0 89.0
ARC-Easy (Acc.) 25-shot 97.6 98.4 98.4 98.9
ARC-Challenge (Acc.) 25-shot 92.2 94.5 95.3 95.3
HellaSwag (Acc.) 10-shot 87.1 84.8 89.2 88.9
PIQA (Acc.) 0-shot 83.9 82.6 85.9 84.7
WinoGrande (Acc.) 5-shot 86.3 82.3 85.2 84.9
RACE-Middle (Acc.) 5-shot 73.1 68.1 74.2 67.1
RACE-High (Acc.) 5-shot 52.6 50.3 56.8 51.3
TriviaQA (EM) 5-shot 80.0 71.9 82.7 82.9
NaturalQuestions (EM) 5-shot 38.6 33.2 41.5 40.0
AGIEval (Acc.) 0-shot 57.5 75.8 60.6 79.6
Code HumanEval (Pass@1) 0-shot 43.3 53.0 54.9 65.2
MBPP (Pass@1) 3-shot 65.0 72.6 68.4 75.4
LiveCodeBench-Base (Pass@1) 3-shot 11.6 12.9 15.5 19.4
CRUXEval-I (Acc.) 2-shot 52.5 59.1 58.5 67.3
CRUXEval-O (Acc.) 2-shot 49.8 59.9 59.9 69.8
Math GSM8K (EM) 8-shot 81.6 88.3 83.5 89.3
MATH (EM) 4-shot 43.4 54.4 49.0 61.6
MGSM (EM) 8-shot 63.6 76.2 69.9 79.8
CMath (EM) 3-shot 78.7 84.5 77.3 90.7
Chinese CLUEWSC (EM) 5-shot 82.0 82.5 83.0 82.7
C-Eval (Acc.) 5-shot 81.4 89.2 72.5 90.1
CMMLU (Acc.) 5-shot 84.0 89.5 73.7 88.8
CMRC (EM) 1-shot 77.4 75.8 76.0 76.3
C3 (Acc.) 0-shot 77.4 76.7 79.7 78.6
CCPM (Acc.) 0-shot 93.0 88.5 78.6 92.0
Multilingual MMMLU-non-English (Acc.) 5-shot 64.0 74.8 73.8 79.4

Note: Best results are shown in bold. Scores with a gap not exceeding 0.3 are considered to be at the same level. DeepSeek-V3 achieves the best performance on most benchmarks, especially on math and code tasks. For more evaluation details, please check our paper.

Context Window

Evaluation results on the Needle In A Haystack (NIAH) tests. DeepSeek-V3 performs well across all context window lengths up to 128K.

Chat Model

Standard Benchmarks (Models larger than 67B)

Benchmark (Metric) DeepSeek V2-0506 DeepSeek V2.5-0905 Qwen2.5 72B-Inst. Llama3.1 405B-Inst. Claude-3.5-Sonnet-1022 GPT-4o 0513 DeepSeek V3
Architecture MoE MoE Dense Dense - - MoE
# Activated Params 21B 21B 72B 405B - - 37B
# Total Params 236B 236B 72B 405B - - 671B
English MMLU (EM) 78.2 80.6 85.3 88.6 88.3 87.2 88.5
MMLU-Redux (EM) 77.9 80.3 85.6 86.2 88.9 88.0 89.1
MMLU-Pro (EM) 58.5 66.2 71.6 73.3 78.0 72.6 75.9
DROP (3-shot F1) 83.0 87.8 76.7 88.7 88.3 83.7 91.6
IF-Eval (Prompt Strict) 57.7 80.6 84.1 86.0 86.5 84.3 86.1
GPQA-Diamond (Pass@1) 35.3 41.3 49.0 51.1 65.0 49.9 59.1
SimpleQA (Correct) 9.0 10.2 9.1 17.1 28.4 38.2 24.9
FRAMES (Acc.) 66.9 65.4 69.8 70.0 72.5 80.5 73.3
LongBench v2 (Acc.) 31.6 35.4 39.4 36.1 41.0 48.1 48.7
Code HumanEval-Mul (Pass@1) 69.3 77.4 77.3 77.2 81.7 80.5 82.6
LiveCodeBench (Pass@1-COT) 18.8 29.2 31.1 28.4 36.3 33.4 40.5
LiveCodeBench (Pass@1) 20.3 28.4 28.7 30.1 32.8 34.2 37.6
Codeforces (Percentile) 17.5 35.6 24.8 25.3 20.3 23.6 51.6
SWE Verified (Resolved) - 22.6 23.8 24.5 50.8 38.8 42.0
Aider-Edit (Acc.) 60.3 71.6 65.4 63.9 84.2 72.9 79.7
Aider-Polyglot (Acc.) - 18.2 7.6 5.8 45.3 16.0 49.6
Math AIME 2024 (Pass@1) 4.6 16.7 23.3 23.3 16.0 9.3 39.2
MATH-500 (EM) 56.3 74.7 80.0 73.8 78.3 74.6 90.2
CNMO 2024 (Pass@1) 2.8 10.8 15.9 6.8 13.1 10.8 43.2
Chinese CLUEWSC (EM) 89.9 90.4 91.4 84.7 85.4 87.9 90.9
C-Eval (EM) 78.6 79.5 86.1 61.5 76.7 76.0 86.5
C-SimpleQA (Correct) 48.5 54.1 48.4 50.4 51.3 59.3 64.8

Note: All models are evaluated in a configuration that limits the output length to 8K. Benchmarks containing fewer than 1000 samples are tested multiple times using varying temperature settings to derive robust final results. DeepSeek-V3 stands as the best-performing open-source model, and also exhibits competitive performance against frontier closed-source models.

Open Ended Generation Evaluation

Model Arena-Hard AlpacaEval 2.0
DeepSeek-V2.5-0905 76.2 50.5
Qwen2.5-72B-Instruct 81.2 49.1
LLaMA-3.1 405B 69.3 40.5
GPT-4o-0513 80.4 51.1
Claude-Sonnet-3.5-1022 85.2 52.0
DeepSeek-V3 85.5 70.0

Note: English open-ended conversation evaluations. For AlpacaEval 2.0, we use the length-controlled win rate as the metric.

5. Chat Website & API Platform

You can chat with DeepSeek-V3 on DeepSeek's official website: chat.deepseek.com

We also provide OpenAI-Compatible API at DeepSeek Platform: platform.deepseek.com

6. How to Run Locally

DeepSeek-V3 can be deployed locally using the following hardware and open-source community software:

  1. DeepSeek-Infer Demo: We provide a simple and lightweight demo for FP8 and BF16 inference.
  2. SGLang: Fully support the DeepSeek-V3 model in both BF16 and FP8 inference modes.
  3. LMDeploy: Enables efficient FP8 and BF16 inference for local and cloud deployment.
  4. TensorRT-LLM: Currently supports BF16 inference and INT4/8 quantization, with FP8 support coming soon.
  5. vLLM: Support DeekSeek-V3 model with FP8 and BF16 modes for tensor parallelism and pipeline parallelism.
  6. AMD GPU: Enables running the DeepSeek-V3 model on AMD GPUs via SGLang in both BF16 and FP8 modes.
  7. Huawei Ascend NPU: Supports running DeepSeek-V3 on Huawei Ascend devices.

Since FP8 training is natively adopted in our framework, we only provide FP8 weights. If you require BF16 weights for experimentation, you can use the provided conversion script to perform the transformation.

Here is an example of converting FP8 weights to BF16:

cd inference
python fp8_cast_bf16.py --input-fp8-hf-path /path/to/fp8_weights --output-bf16-hf-path /path/to/bf16_weights

NOTE: Huggingface's Transformers has not been directly supported yet.

6.1 Inference with DeepSeek-Infer Demo (example only)

Model Weights & Demo Code Preparation

First, clone our DeepSeek-V3 GitHub repository:

git clone https://github.com/deepseek-ai/DeepSeek-V3.git

Navigate to the inference folder and install dependencies listed in requirements.txt.

cd DeepSeek-V3/inference
pip install -r requirements.txt

Download the model weights from HuggingFace, and put them into /path/to/DeepSeek-V3 folder.

Model Weights Conversion

Convert HuggingFace model weights to a specific format:

python convert.py --hf-ckpt-path /path/to/DeepSeek-V3 --save-path /path/to/DeepSeek-V3-Demo --n-experts 256 --model-parallel 16

Run

Then you can chat with DeepSeek-V3:

torchrun --nnodes 2 --nproc-per-node 8 generate.py --node-rank $RANK --master-addr $ADDR --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --interactive --temperature 0.7 --max-new-tokens 200

Or batch inference on a given file:

torchrun --nnodes 2 --nproc-per-node 8 generate.py --node-rank $RANK --master-addr $ADDR --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --input-file $FILE

6.2 Inference with SGLang (recommended)

SGLang currently supports MLA optimizations, FP8 (W8A8), FP8 KV Cache, and Torch Compile, delivering state-of-the-art latency and throughput performance among open-source frameworks.

Notably, SGLang v0.4.1 fully supports running DeepSeek-V3 on both NVIDIA and AMD GPUs, making it a highly versatile and robust solution.

Here are the launch instructions from the SGLang team: https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3

6.3 Inference with LMDeploy (recommended)

LMDeploy, a flexible and high-performance inference and serving framework tailored for large language models, now supports DeepSeek-V3. It offers both offline pipeline processing and online deployment capabilities, seamlessly integrating with PyTorch-based workflows.

For comprehensive step-by-step instructions on running DeepSeek-V3 with LMDeploy, please refer to here: https://github.com/InternLM/lmdeploy/issues/2960

6.4 Inference with TRT-LLM (recommended)

TensorRT-LLM now supports the DeepSeek-V3 model, offering precision options such as BF16 and INT4/INT8 weight-only. Support for FP8 is currently in progress and will be released soon. You can access the custom branch of TRTLLM specifically for DeepSeek-V3 support through the following link to experience the new features directly: https://github.com/NVIDIA/TensorRT-LLM/tree/deepseek/examples/deepseek_v3.

6.5 Inference with vLLM (recommended)

vLLM v0.6.6 supports DeepSeek-V3 inference for FP8 and BF16 modes on both NVIDIA and AMD GPUs. Aside from standard techniques, vLLM offers pipeline parallelism allowing you to run this model on multiple machines connected by networks. For detailed guidance, please refer to the vLLM instructions. Please feel free to follow the enhancement plan as well.

6.6 Recommended Inference Functionality with AMD GPUs

In collaboration with the AMD team, we have achieved Day-One support for AMD GPUs using SGLang, with full compatibility for both FP8 and BF16 precision. For detailed guidance, please refer to the SGLang instructions.

6.7 Recommended Inference Functionality with Huawei Ascend NPUs

The MindIE framework from the Huawei Ascend community has successfully adapted the BF16 version of DeepSeek-V3. For step-by-step guidance on Ascend NPUs, please follow the instructions here.

7. License

This code repository is licensed under the MIT License. The use of DeepSeek-V3 Base/Chat models is subject to the Model License. DeepSeek-V3 series (including Base and Chat) supports commercial use.

8. Citation

@misc{deepseekai2024deepseekv3technicalreport,
      title={DeepSeek-V3 Technical Report}, 
      author={DeepSeek-AI and Aixin Liu and Bei Feng and Bing Xue and Bingxuan Wang and Bochao Wu and Chengda Lu and Chenggang Zhao and Chengqi Deng and Chenyu Zhang and Chong Ruan and Damai Dai and Daya Guo and Dejian Yang and Deli Chen and Dongjie Ji and Erhang Li and Fangyun Lin and Fucong Dai and Fuli Luo and Guangbo Hao and Guanting Chen and Guowei Li and H. Zhang and Han Bao and Hanwei Xu and Haocheng Wang and Haowei Zhang and Honghui Ding and Huajian Xin and Huazuo Gao and Hui Li and Hui Qu and J. L. Cai and Jian Liang and Jianzhong Guo and Jiaqi Ni and Jiashi Li and Jiawei Wang and Jin Chen and Jingchang Chen and Jingyang Yuan and Junjie Qiu and Junlong Li and Junxiao Song and Kai Dong and Kai Hu and Kaige Gao and Kang Guan and Kexin Huang and Kuai Yu and Lean Wang and Lecong Zhang and Lei Xu and Leyi Xia and Liang Zhao and Litong Wang and Liyue Zhang and Meng Li and Miaojun Wang and Mingchuan Zhang and Minghua Zhang and Minghui Tang and Mingming Li and Ning Tian and Panpan Huang and Peiyi Wang and Peng Zhang and Qiancheng Wang and Qihao Zhu and Qinyu Chen and Qiushi Du and R. J. Chen and R. L. Jin and Ruiqi Ge and Ruisong Zhang and Ruizhe Pan and Runji Wang and Runxin Xu and Ruoyu Zhang and Ruyi Chen and S. S. Li and Shanghao Lu and Shangyan Zhou and Shanhuang Chen and Shaoqing Wu and Shengfeng Ye and Shengfeng Ye and Shirong Ma and Shiyu Wang and Shuang Zhou and Shuiping Yu and Shunfeng Zhou and Shuting Pan and T. Wang and Tao Yun and Tian Pei and Tianyu Sun and W. L. Xiao and Wangding Zeng and Wanjia Zhao and Wei An and Wen Liu and Wenfeng Liang and Wenjun Gao and Wenqin Yu and Wentao Zhang and X. Q. Li and Xiangyue Jin and Xianzu Wang and Xiao Bi and Xiaodong Liu and Xiaohan Wang and Xiaojin Shen and Xiaokang Chen and Xiaokang Zhang and Xiaosha Chen and Xiaotao Nie and Xiaowen Sun and Xiaoxiang Wang and Xin Cheng and Xin Liu and Xin Xie and Xingchao Liu and Xingkai Yu and Xinnan Song and Xinxia Shan and Xinyi Zhou and Xinyu Yang and Xinyuan Li and Xuecheng Su and Xuheng Lin and Y. K. Li and Y. Q. Wang and Y. X. Wei and Y. X. Zhu and Yang Zhang and Yanhong Xu and Yanhong Xu and Yanping Huang and Yao Li and Yao Zhao and Yaofeng Sun and Yaohui Li and Yaohui Wang and Yi Yu and Yi Zheng and Yichao Zhang and Yifan Shi and Yiliang Xiong and Ying He and Ying Tang and Yishi Piao and Yisong Wang and Yixuan Tan and Yiyang Ma and Yiyuan Liu and Yongqiang Guo and Yu Wu and Yuan Ou and Yuchen Zhu and Yuduan Wang and Yue Gong and Yuheng Zou and Yujia He and Yukun Zha and Yunfan Xiong and Yunxian Ma and Yuting Yan and Yuxiang Luo and Yuxiang You and Yuxuan Liu and Yuyang Zhou and Z. F. Wu and Z. Z. Ren and Zehui Ren and Zhangli Sha and Zhe Fu and Zhean Xu and Zhen Huang and Zhen Zhang and Zhenda Xie and Zhengyan Zhang and Zhewen Hao and Zhibin Gou and Zhicheng Ma and Zhigang Yan and Zhihong Shao and Zhipeng Xu and Zhiyu Wu and Zhongyu Zhang and Zhuoshu Li and Zihui Gu and Zijia Zhu and Zijun Liu and Zilin Li and Ziwei Xie and Ziyang Song and Ziyi Gao and Zizheng Pan},
      year={2024},
      eprint={2412.19437},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2412.19437}, 
}

9. Contact

If you have any questions, please raise an issue or contact us at service@deepseek.com.