metadata
language:
- ara
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- uoseftalaat/GP
metrics:
- wer
model-index:
- name: Whisper Small for quran recognition
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Quran_requiters
type: uoseftalaat/GP
config: default
split: test
args: 'config: default, split: train'
metrics:
- name: Wer
type: wer
value: 3.369434416365824
Whisper Small for quran recognition
This model is a fine-tuned version of openai/whisper-small on the Quran_requiters dataset. It achieves the following results on the evaluation set:
- Loss: 0.0183
- Wer: 3.3694
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0026 | 3.24 | 1000 | 0.0205 | 4.4868 |
0.0003 | 6.47 | 2000 | 0.0180 | 3.3522 |
0.0003 | 6.49 | 2005 | 0.0180 | 3.3522 |
0.0003 | 6.5 | 2010 | 0.0180 | 3.3522 |
0.0001 | 9.71 | 3000 | 0.0180 | 3.2663 |
0.0 | 12.94 | 4000 | 0.0183 | 3.3694 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.17.1
- Tokenizers 0.15.1