Describe how to use the model

#1
Files changed (1) hide show
  1. README.md +48 -1
README.md CHANGED
@@ -7,4 +7,51 @@ language:
7
  metrics:
8
  - accuracy
9
  pipeline_tag: object-detection
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  metrics:
8
  - accuracy
9
  pipeline_tag: object-detection
10
+ ---
11
+
12
+ ## How to Get Started with the Model
13
+
14
+ ### Install `ultralytics YOLO` package
15
+
16
+ ``` shell
17
+ $ pip install ultralytics
18
+ ```
19
+
20
+ ### Perform Inference as per [kurkurzz](https://github.com/kurkurzz/custom-yolov8-auto-annotation-cvat-blueprint/blob/master/main.py)
21
+
22
+ ``` python
23
+ from ultralytics import YOLO
24
+ from json import dumps
25
+
26
+ checkpoint_path = "path/to/model/weight.pt" # e.g weights/best.pt in this directory
27
+ model = YOLO(checkpoint_path)
28
+
29
+ image_path = "path/to/image"
30
+ infered = model(image_path)
31
+ results = infered[0]
32
+
33
+ boxes = result.boxes.data[:,:4]
34
+ confs = result.boxes.conf
35
+ clss = result.boxes.cls
36
+ class_name = result.names
37
+
38
+ #detected = results[0].boxes.xywh # or xywhn, xyxy pr xyxyn
39
+
40
+ detections = []
41
+ threshold = 0.3 # 0 < threshold <= 1
42
+
43
+ for box, conf, cls in zip(boxes, confs, clss):
44
+ label = class_name[int(cls)]
45
+ if conf >= threshold:
46
+ # must be in this format
47
+ detections.append({
48
+ 'confidence': str(float(conf)),
49
+ 'label': label,
50
+ 'points': box.tolist(),
51
+ 'type': 'rectangle',
52
+ })
53
+
54
+ detected_objects = dumps(detections)
55
+ print(detected_objects)
56
+
57
+ ```