Edit model card

ONNX convert all-MiniLM-L6-v2

Conversion of sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers ONNX model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. This custom model takes last_hidden_state and pooler_output whereas the sentence-transformers exported with default ONNX config only contains last_hidden_state as output.

Usage (HuggingFace Optimum)

Using this model becomes easy when you have optimum installed:

python -m pip install optimum

Then you can use the model like this:

from optimum.onnxruntime.modeling_ort import ORTModelForCustomTasks

model = ORTModelForCustomTasks.from_pretrained("vamsibanda/sbert-all-MiniLM-L6-with-pooler")
tokenizer = AutoTokenizer.from_pretrained("vamsibanda/sbert-all-MiniLM-L6-with-pooler")
inputs = tokenizer("I love burritos!", return_tensors="pt")
pred = model(**inputs)
embedding = pred['pooler_output']
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.