Upload folder using huggingface_hub
Browse files- README.md +4 -107
- adapter_config.json +3 -3
- adapter_model.safetensors +2 -2
- optimizer.pt +2 -2
- scheduler.pt +1 -1
- trainer_state.json +393 -393
- training_args.bin +1 -1
README.md
CHANGED
@@ -3,11 +3,7 @@ base_model: meta-llama/Llama-2-7b-hf
|
|
3 |
library_name: peft
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
This is a LLaMA-2-7B model fine-tuned using FourierFT on alpaca dataset. Only K and V projections are set to be trainable.
|
9 |
-
|
10 |
-
|
11 |
|
12 |
<!-- Provide a quick summary of what the model is/does. -->
|
13 |
|
@@ -81,7 +77,6 @@ Use the code below to get started with the model.
|
|
81 |
|
82 |
### Training Data
|
83 |
|
84 |
-
Alpaca
|
85 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
86 |
|
87 |
[More Information Needed]
|
@@ -97,25 +92,8 @@ Alpaca
|
|
97 |
|
98 |
#### Training Hyperparameters
|
99 |
|
100 |
-
- **Training regime:**
|
101 |
-
|
102 |
-
```
|
103 |
-
python fourierft-alpaca.py \
|
104 |
-
--warmup_ratio 0.06 \
|
105 |
-
--num_train_epochs 2 \
|
106 |
-
--seed 0 \
|
107 |
-
--per_device_train_batch_size 2 \
|
108 |
-
--gradient_accumulation_steps 32 \
|
109 |
-
--output_dir './results' \
|
110 |
-
--eval_strategy "epoch" \
|
111 |
-
--mixed_precision "bf16" \
|
112 |
-
--lr_scheduler_type "linear" \
|
113 |
-
--learning_rate 3e-4 \
|
114 |
-
--logging_steps 10 \
|
115 |
-
--report_to "none" \
|
116 |
-
--fourier_scale 512 \
|
117 |
-
--fourier_n_frequency 10000
|
118 |
-
```
|
119 |
#### Speeds, Sizes, Times [optional]
|
120 |
|
121 |
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
@@ -123,88 +101,7 @@ python fourierft-alpaca.py \
|
|
123 |
[More Information Needed]
|
124 |
|
125 |
## Evaluation
|
126 |
-
|
127 |
-
```
|
128 |
-
Average accuracy 0.280 - abstract_algebra
|
129 |
-
Average accuracy 0.474 - anatomy
|
130 |
-
Average accuracy 0.434 - astronomy
|
131 |
-
Average accuracy 0.490 - business_ethics
|
132 |
-
Average accuracy 0.491 - clinical_knowledge
|
133 |
-
Average accuracy 0.438 - college_biology
|
134 |
-
Average accuracy 0.330 - college_chemistry
|
135 |
-
Average accuracy 0.400 - college_computer_science
|
136 |
-
Average accuracy 0.350 - college_mathematics
|
137 |
-
Average accuracy 0.445 - college_medicine
|
138 |
-
Average accuracy 0.157 - college_physics
|
139 |
-
Average accuracy 0.550 - computer_security
|
140 |
-
Average accuracy 0.426 - conceptual_physics
|
141 |
-
Average accuracy 0.254 - econometrics
|
142 |
-
Average accuracy 0.503 - electrical_engineering
|
143 |
-
Average accuracy 0.312 - elementary_mathematics
|
144 |
-
Average accuracy 0.262 - formal_logic
|
145 |
-
Average accuracy 0.320 - global_facts
|
146 |
-
Average accuracy 0.500 - high_school_biology
|
147 |
-
Average accuracy 0.330 - high_school_chemistry
|
148 |
-
Average accuracy 0.420 - high_school_computer_science
|
149 |
-
Average accuracy 0.588 - high_school_european_history
|
150 |
-
Average accuracy 0.540 - high_school_geography
|
151 |
-
Average accuracy 0.663 - high_school_government_and_politics
|
152 |
-
Average accuracy 0.441 - high_school_macroeconomics
|
153 |
-
Average accuracy 0.326 - high_school_mathematics
|
154 |
-
Average accuracy 0.429 - high_school_microeconomics
|
155 |
-
Average accuracy 0.258 - high_school_physics
|
156 |
-
Average accuracy 0.622 - high_school_psychology
|
157 |
-
Average accuracy 0.306 - high_school_statistics
|
158 |
-
Average accuracy 0.588 - high_school_us_history
|
159 |
-
Average accuracy 0.624 - high_school_world_history
|
160 |
-
Average accuracy 0.570 - human_aging
|
161 |
-
Average accuracy 0.481 - human_sexuality
|
162 |
-
Average accuracy 0.628 - international_law
|
163 |
-
Average accuracy 0.528 - jurisprudence
|
164 |
-
Average accuracy 0.479 - logical_fallacies
|
165 |
-
Average accuracy 0.402 - machine_learning
|
166 |
-
Average accuracy 0.592 - management
|
167 |
-
Average accuracy 0.641 - marketing
|
168 |
-
Average accuracy 0.520 - medical_genetics
|
169 |
-
Average accuracy 0.621 - miscellaneous
|
170 |
-
Average accuracy 0.474 - moral_disputes
|
171 |
-
Average accuracy 0.241 - moral_scenarios
|
172 |
-
Average accuracy 0.484 - nutrition
|
173 |
-
Average accuracy 0.579 - philosophy
|
174 |
-
Average accuracy 0.485 - prehistory
|
175 |
-
Average accuracy 0.372 - professional_accounting
|
176 |
-
Average accuracy 0.345 - professional_law
|
177 |
-
Average accuracy 0.537 - professional_medicine
|
178 |
-
Average accuracy 0.428 - professional_psychology
|
179 |
-
Average accuracy 0.545 - public_relations
|
180 |
-
Average accuracy 0.514 - security_studies
|
181 |
-
Average accuracy 0.632 - sociology
|
182 |
-
Average accuracy 0.710 - us_foreign_policy
|
183 |
-
Average accuracy 0.470 - virology
|
184 |
-
Average accuracy 0.673 - world_religions
|
185 |
-
Average accuracy 0.315 - math
|
186 |
-
Average accuracy 0.501 - health
|
187 |
-
Average accuracy 0.345 - physics
|
188 |
-
Average accuracy 0.595 - business
|
189 |
-
Average accuracy 0.480 - biology
|
190 |
-
Average accuracy 0.330 - chemistry
|
191 |
-
Average accuracy 0.442 - computer science
|
192 |
-
Average accuracy 0.408 - economics
|
193 |
-
Average accuracy 0.503 - engineering
|
194 |
-
Average accuracy 0.391 - philosophy
|
195 |
-
Average accuracy 0.535 - other
|
196 |
-
Average accuracy 0.561 - history
|
197 |
-
Average accuracy 0.540 - geography
|
198 |
-
Average accuracy 0.594 - politics
|
199 |
-
Average accuracy 0.519 - psychology
|
200 |
-
Average accuracy 0.572 - culture
|
201 |
-
Average accuracy 0.375 - law
|
202 |
-
Average accuracy 0.374 - STEM
|
203 |
-
Average accuracy 0.419 - humanities
|
204 |
-
Average accuracy 0.515 - social sciences
|
205 |
-
Average accuracy 0.526 - other (business, health, misc.)
|
206 |
-
Average accuracy: 0.455
|
207 |
-
```
|
208 |
<!-- This section describes the evaluation protocols and provides the results. -->
|
209 |
|
210 |
### Testing Data, Factors & Metrics
|
|
|
3 |
library_name: peft
|
4 |
---
|
5 |
|
6 |
+
# Model Card for Model ID
|
|
|
|
|
|
|
|
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
77 |
|
78 |
### Training Data
|
79 |
|
|
|
80 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
|
82 |
[More Information Needed]
|
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
#### Speeds, Sizes, Times [optional]
|
98 |
|
99 |
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
|
|
101 |
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
|
107 |
### Testing Data, Factors & Metrics
|
adapter_config.json
CHANGED
@@ -9,15 +9,15 @@
|
|
9 |
"layers_pattern": null,
|
10 |
"layers_to_transform": null,
|
11 |
"modules_to_save": null,
|
12 |
-
"n_frequency":
|
13 |
"n_frequency_pattern": {},
|
14 |
"peft_type": "FOURIERFT",
|
15 |
"random_loc_seed": 777,
|
16 |
"revision": null,
|
17 |
"scaling": 512.0,
|
18 |
"target_modules": [
|
19 |
-
"
|
20 |
-
"
|
21 |
],
|
22 |
"task_type": "CAUSAL_LM"
|
23 |
}
|
|
|
9 |
"layers_pattern": null,
|
10 |
"layers_to_transform": null,
|
11 |
"modules_to_save": null,
|
12 |
+
"n_frequency": 100000,
|
13 |
"n_frequency_pattern": {},
|
14 |
"peft_type": "FOURIERFT",
|
15 |
"random_loc_seed": 777,
|
16 |
"revision": null,
|
17 |
"scaling": 512.0,
|
18 |
"target_modules": [
|
19 |
+
"v_proj",
|
20 |
+
"q_proj"
|
21 |
],
|
22 |
"task_type": "CAUSAL_LM"
|
23 |
}
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:507161a3f89ad75ea3966c069b78d88e570a4e1f7c4ad1a46566be6cc816af58
|
3 |
+
size 25608864
|
optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a97188994f5cc07ad3d7ff2867bef896967ca6367687c302e4983343e578113a
|
3 |
+
size 51254010
|
scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1064
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f401f38a09da5324949ad9c68ac0e2b02df016ef05210c0508136cfa8255b836
|
3 |
size 1064
|
trainer_state.json
CHANGED
@@ -10,913 +10,913 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 0.015455950540958269,
|
13 |
-
"grad_norm": 0.
|
14 |
-
"learning_rate":
|
15 |
-
"loss": 1.
|
16 |
"step": 10
|
17 |
},
|
18 |
{
|
19 |
"epoch": 0.030911901081916538,
|
20 |
-
"grad_norm": 0.
|
21 |
-
"learning_rate":
|
22 |
-
"loss": 1.
|
23 |
"step": 20
|
24 |
},
|
25 |
{
|
26 |
"epoch": 0.04636785162287481,
|
27 |
-
"grad_norm": 0.
|
28 |
-
"learning_rate": 0.
|
29 |
-
"loss":
|
30 |
"step": 30
|
31 |
},
|
32 |
{
|
33 |
"epoch": 0.061823802163833076,
|
34 |
-
"grad_norm": 0.
|
35 |
-
"learning_rate": 0.
|
36 |
-
"loss":
|
37 |
"step": 40
|
38 |
},
|
39 |
{
|
40 |
"epoch": 0.07727975270479134,
|
41 |
-
"grad_norm": 0.
|
42 |
-
"learning_rate": 0.
|
43 |
-
"loss":
|
44 |
"step": 50
|
45 |
},
|
46 |
{
|
47 |
"epoch": 0.09273570324574962,
|
48 |
-
"grad_norm": 0.
|
49 |
-
"learning_rate": 0.
|
50 |
-
"loss":
|
51 |
"step": 60
|
52 |
},
|
53 |
{
|
54 |
"epoch": 0.10819165378670788,
|
55 |
-
"grad_norm": 0.
|
56 |
-
"learning_rate": 0.
|
57 |
-
"loss":
|
58 |
"step": 70
|
59 |
},
|
60 |
{
|
61 |
"epoch": 0.12364760432766615,
|
62 |
-
"grad_norm": 0.
|
63 |
-
"learning_rate": 0.
|
64 |
-
"loss":
|
65 |
"step": 80
|
66 |
},
|
67 |
{
|
68 |
"epoch": 0.1391035548686244,
|
69 |
-
"grad_norm": 0.
|
70 |
-
"learning_rate": 0.
|
71 |
-
"loss": 0.
|
72 |
"step": 90
|
73 |
},
|
74 |
{
|
75 |
"epoch": 0.1545595054095827,
|
76 |
-
"grad_norm": 0.
|
77 |
-
"learning_rate": 0.
|
78 |
-
"loss":
|
79 |
"step": 100
|
80 |
},
|
81 |
{
|
82 |
"epoch": 0.17001545595054096,
|
83 |
-
"grad_norm": 0.
|
84 |
-
"learning_rate": 0.
|
85 |
-
"loss": 0.
|
86 |
"step": 110
|
87 |
},
|
88 |
{
|
89 |
"epoch": 0.18547140649149924,
|
90 |
-
"grad_norm": 0.
|
91 |
-
"learning_rate": 0.
|
92 |
-
"loss": 0.
|
93 |
"step": 120
|
94 |
},
|
95 |
{
|
96 |
"epoch": 0.2009273570324575,
|
97 |
-
"grad_norm": 0.
|
98 |
-
"learning_rate": 0.
|
99 |
-
"loss": 0.
|
100 |
"step": 130
|
101 |
},
|
102 |
{
|
103 |
"epoch": 0.21638330757341576,
|
104 |
-
"grad_norm": 0.
|
105 |
-
"learning_rate": 0.
|
106 |
-
"loss": 0.
|
107 |
"step": 140
|
108 |
},
|
109 |
{
|
110 |
"epoch": 0.23183925811437403,
|
111 |
-
"grad_norm": 0.
|
112 |
-
"learning_rate": 0.
|
113 |
-
"loss": 0.
|
114 |
"step": 150
|
115 |
},
|
116 |
{
|
117 |
"epoch": 0.2472952086553323,
|
118 |
-
"grad_norm": 0.
|
119 |
-
"learning_rate": 0.
|
120 |
-
"loss": 0.
|
121 |
"step": 160
|
122 |
},
|
123 |
{
|
124 |
"epoch": 0.26275115919629055,
|
125 |
-
"grad_norm": 0.
|
126 |
-
"learning_rate": 0.
|
127 |
-
"loss": 0.
|
128 |
"step": 170
|
129 |
},
|
130 |
{
|
131 |
"epoch": 0.2782071097372488,
|
132 |
-
"grad_norm": 0.
|
133 |
-
"learning_rate": 0.
|
134 |
-
"loss": 0.
|
135 |
"step": 180
|
136 |
},
|
137 |
{
|
138 |
"epoch": 0.2936630602782071,
|
139 |
-
"grad_norm": 0.
|
140 |
-
"learning_rate": 0.
|
141 |
-
"loss": 0.
|
142 |
"step": 190
|
143 |
},
|
144 |
{
|
145 |
"epoch": 0.3091190108191654,
|
146 |
-
"grad_norm": 0.
|
147 |
-
"learning_rate": 0.
|
148 |
-
"loss": 0.
|
149 |
"step": 200
|
150 |
},
|
151 |
{
|
152 |
"epoch": 0.32457496136012365,
|
153 |
-
"grad_norm": 0.
|
154 |
-
"learning_rate": 0.
|
155 |
-
"loss": 0.
|
156 |
"step": 210
|
157 |
},
|
158 |
{
|
159 |
"epoch": 0.3400309119010819,
|
160 |
-
"grad_norm": 0.
|
161 |
-
"learning_rate": 0.
|
162 |
-
"loss": 0.
|
163 |
"step": 220
|
164 |
},
|
165 |
{
|
166 |
"epoch": 0.3554868624420402,
|
167 |
-
"grad_norm": 0.
|
168 |
-
"learning_rate": 0.
|
169 |
-
"loss": 0.
|
170 |
"step": 230
|
171 |
},
|
172 |
{
|
173 |
"epoch": 0.37094281298299847,
|
174 |
-
"grad_norm": 0.
|
175 |
-
"learning_rate": 0.
|
176 |
-
"loss": 0.
|
177 |
"step": 240
|
178 |
},
|
179 |
{
|
180 |
"epoch": 0.38639876352395675,
|
181 |
-
"grad_norm": 0.
|
182 |
-
"learning_rate": 0.
|
183 |
-
"loss": 0.
|
184 |
"step": 250
|
185 |
},
|
186 |
{
|
187 |
"epoch": 0.401854714064915,
|
188 |
-
"grad_norm": 0.
|
189 |
-
"learning_rate": 0.
|
190 |
-
"loss": 0.
|
191 |
"step": 260
|
192 |
},
|
193 |
{
|
194 |
"epoch": 0.41731066460587324,
|
195 |
-
"grad_norm": 0.
|
196 |
-
"learning_rate": 0.
|
197 |
-
"loss": 0.
|
198 |
"step": 270
|
199 |
},
|
200 |
{
|
201 |
"epoch": 0.4327666151468315,
|
202 |
-
"grad_norm": 0.
|
203 |
-
"learning_rate": 0.
|
204 |
-
"loss": 0.
|
205 |
"step": 280
|
206 |
},
|
207 |
{
|
208 |
"epoch": 0.4482225656877898,
|
209 |
-
"grad_norm": 0.
|
210 |
-
"learning_rate": 0.
|
211 |
-
"loss": 0.
|
212 |
"step": 290
|
213 |
},
|
214 |
{
|
215 |
"epoch": 0.46367851622874806,
|
216 |
-
"grad_norm": 0.
|
217 |
-
"learning_rate": 0.
|
218 |
-
"loss": 0.
|
219 |
"step": 300
|
220 |
},
|
221 |
{
|
222 |
"epoch": 0.47913446676970634,
|
223 |
-
"grad_norm": 0.
|
224 |
-
"learning_rate": 0.
|
225 |
-
"loss": 0.
|
226 |
"step": 310
|
227 |
},
|
228 |
{
|
229 |
"epoch": 0.4945904173106646,
|
230 |
-
"grad_norm": 0.
|
231 |
-
"learning_rate": 0.
|
232 |
-
"loss": 0.
|
233 |
"step": 320
|
234 |
},
|
235 |
{
|
236 |
"epoch": 0.5100463678516228,
|
237 |
-
"grad_norm": 0.
|
238 |
-
"learning_rate": 0.
|
239 |
-
"loss": 0.
|
240 |
"step": 330
|
241 |
},
|
242 |
{
|
243 |
"epoch": 0.5255023183925811,
|
244 |
-
"grad_norm": 0.
|
245 |
-
"learning_rate": 0.
|
246 |
-
"loss": 0.
|
247 |
"step": 340
|
248 |
},
|
249 |
{
|
250 |
"epoch": 0.5409582689335394,
|
251 |
-
"grad_norm": 0.
|
252 |
-
"learning_rate": 0.
|
253 |
-
"loss": 0.
|
254 |
"step": 350
|
255 |
},
|
256 |
{
|
257 |
"epoch": 0.5564142194744977,
|
258 |
-
"grad_norm": 0.
|
259 |
-
"learning_rate": 0.
|
260 |
-
"loss": 0.
|
261 |
"step": 360
|
262 |
},
|
263 |
{
|
264 |
"epoch": 0.5718701700154559,
|
265 |
-
"grad_norm": 0.
|
266 |
-
"learning_rate": 0.
|
267 |
-
"loss": 0.
|
268 |
"step": 370
|
269 |
},
|
270 |
{
|
271 |
"epoch": 0.5873261205564142,
|
272 |
-
"grad_norm": 0.
|
273 |
-
"learning_rate": 0.
|
274 |
-
"loss": 0.
|
275 |
"step": 380
|
276 |
},
|
277 |
{
|
278 |
"epoch": 0.6027820710973725,
|
279 |
-
"grad_norm": 0.
|
280 |
-
"learning_rate": 0.
|
281 |
-
"loss": 0.
|
282 |
"step": 390
|
283 |
},
|
284 |
{
|
285 |
"epoch": 0.6182380216383307,
|
286 |
-
"grad_norm": 0.
|
287 |
-
"learning_rate": 0.
|
288 |
-
"loss": 0.
|
289 |
"step": 400
|
290 |
},
|
291 |
{
|
292 |
"epoch": 0.633693972179289,
|
293 |
-
"grad_norm": 0.
|
294 |
-
"learning_rate": 0.
|
295 |
-
"loss": 0.
|
296 |
"step": 410
|
297 |
},
|
298 |
{
|
299 |
"epoch": 0.6491499227202473,
|
300 |
-
"grad_norm": 0.
|
301 |
-
"learning_rate": 0.
|
302 |
-
"loss": 0.
|
303 |
"step": 420
|
304 |
},
|
305 |
{
|
306 |
"epoch": 0.6646058732612056,
|
307 |
-
"grad_norm": 0.
|
308 |
-
"learning_rate": 0.
|
309 |
-
"loss": 0.
|
310 |
"step": 430
|
311 |
},
|
312 |
{
|
313 |
"epoch": 0.6800618238021638,
|
314 |
-
"grad_norm": 0.
|
315 |
-
"learning_rate": 0.
|
316 |
-
"loss": 0.
|
317 |
"step": 440
|
318 |
},
|
319 |
{
|
320 |
"epoch": 0.6955177743431221,
|
321 |
-
"grad_norm": 0.
|
322 |
-
"learning_rate": 0.
|
323 |
-
"loss": 0.
|
324 |
"step": 450
|
325 |
},
|
326 |
{
|
327 |
"epoch": 0.7109737248840804,
|
328 |
-
"grad_norm": 0.
|
329 |
-
"learning_rate": 0.
|
330 |
-
"loss": 0.
|
331 |
"step": 460
|
332 |
},
|
333 |
{
|
334 |
"epoch": 0.7264296754250387,
|
335 |
-
"grad_norm": 0.
|
336 |
-
"learning_rate": 0.
|
337 |
-
"loss": 0.
|
338 |
"step": 470
|
339 |
},
|
340 |
{
|
341 |
"epoch": 0.7418856259659969,
|
342 |
-
"grad_norm": 0.
|
343 |
-
"learning_rate": 0.
|
344 |
-
"loss": 0.
|
345 |
"step": 480
|
346 |
},
|
347 |
{
|
348 |
"epoch": 0.7573415765069552,
|
349 |
-
"grad_norm": 0.
|
350 |
-
"learning_rate": 0.
|
351 |
-
"loss": 0.
|
352 |
"step": 490
|
353 |
},
|
354 |
{
|
355 |
"epoch": 0.7727975270479135,
|
356 |
-
"grad_norm": 0.
|
357 |
-
"learning_rate": 0.
|
358 |
-
"loss": 0.
|
359 |
"step": 500
|
360 |
},
|
361 |
{
|
362 |
"epoch": 0.7882534775888718,
|
363 |
-
"grad_norm": 0.
|
364 |
-
"learning_rate": 0.
|
365 |
-
"loss": 0.
|
366 |
"step": 510
|
367 |
},
|
368 |
{
|
369 |
"epoch": 0.80370942812983,
|
370 |
-
"grad_norm": 0.
|
371 |
-
"learning_rate": 0.
|
372 |
-
"loss": 0.
|
373 |
"step": 520
|
374 |
},
|
375 |
{
|
376 |
"epoch": 0.8191653786707882,
|
377 |
-
"grad_norm": 0.
|
378 |
-
"learning_rate": 0.
|
379 |
-
"loss": 0.
|
380 |
"step": 530
|
381 |
},
|
382 |
{
|
383 |
"epoch": 0.8346213292117465,
|
384 |
-
"grad_norm": 0.
|
385 |
-
"learning_rate": 0.
|
386 |
-
"loss": 0.
|
387 |
"step": 540
|
388 |
},
|
389 |
{
|
390 |
"epoch": 0.8500772797527048,
|
391 |
-
"grad_norm": 0.
|
392 |
-
"learning_rate": 0.
|
393 |
-
"loss": 0.
|
394 |
"step": 550
|
395 |
},
|
396 |
{
|
397 |
"epoch": 0.865533230293663,
|
398 |
-
"grad_norm": 0.
|
399 |
-
"learning_rate": 0.
|
400 |
-
"loss": 0.
|
401 |
"step": 560
|
402 |
},
|
403 |
{
|
404 |
"epoch": 0.8809891808346213,
|
405 |
-
"grad_norm": 0.
|
406 |
-
"learning_rate": 0.
|
407 |
-
"loss": 0.
|
408 |
"step": 570
|
409 |
},
|
410 |
{
|
411 |
"epoch": 0.8964451313755796,
|
412 |
-
"grad_norm": 0.
|
413 |
-
"learning_rate": 0.
|
414 |
-
"loss": 0.
|
415 |
"step": 580
|
416 |
},
|
417 |
{
|
418 |
"epoch": 0.9119010819165378,
|
419 |
-
"grad_norm": 0.
|
420 |
-
"learning_rate": 0.
|
421 |
-
"loss": 0.
|
422 |
"step": 590
|
423 |
},
|
424 |
{
|
425 |
"epoch": 0.9273570324574961,
|
426 |
-
"grad_norm": 0.
|
427 |
-
"learning_rate": 0.
|
428 |
-
"loss": 0.
|
429 |
"step": 600
|
430 |
},
|
431 |
{
|
432 |
"epoch": 0.9428129829984544,
|
433 |
-
"grad_norm": 0.
|
434 |
-
"learning_rate": 0.
|
435 |
-
"loss": 0.
|
436 |
"step": 610
|
437 |
},
|
438 |
{
|
439 |
"epoch": 0.9582689335394127,
|
440 |
-
"grad_norm": 0.
|
441 |
-
"learning_rate": 0.
|
442 |
-
"loss": 0.
|
443 |
"step": 620
|
444 |
},
|
445 |
{
|
446 |
"epoch": 0.973724884080371,
|
447 |
-
"grad_norm": 0.
|
448 |
-
"learning_rate": 0.
|
449 |
-
"loss": 0.
|
450 |
"step": 630
|
451 |
},
|
452 |
{
|
453 |
"epoch": 0.9891808346213292,
|
454 |
-
"grad_norm": 0.
|
455 |
-
"learning_rate": 0.
|
456 |
-
"loss": 0.
|
457 |
"step": 640
|
458 |
},
|
459 |
{
|
460 |
"epoch": 1.0,
|
461 |
-
"eval_loss": 0.
|
462 |
-
"eval_runtime":
|
463 |
-
"eval_samples_per_second":
|
464 |
-
"eval_steps_per_second": 0.
|
465 |
"step": 647
|
466 |
},
|
467 |
{
|
468 |
"epoch": 1.0046367851622875,
|
469 |
-
"grad_norm": 0.
|
470 |
-
"learning_rate": 0.
|
471 |
-
"loss": 0.
|
472 |
"step": 650
|
473 |
},
|
474 |
{
|
475 |
"epoch": 1.0200927357032457,
|
476 |
-
"grad_norm": 0.
|
477 |
-
"learning_rate": 0.
|
478 |
-
"loss": 0.
|
479 |
"step": 660
|
480 |
},
|
481 |
{
|
482 |
"epoch": 1.035548686244204,
|
483 |
-
"grad_norm": 0.
|
484 |
-
"learning_rate": 0.
|
485 |
-
"loss": 0.
|
486 |
"step": 670
|
487 |
},
|
488 |
{
|
489 |
"epoch": 1.0510046367851622,
|
490 |
-
"grad_norm": 0.
|
491 |
-
"learning_rate": 0.
|
492 |
-
"loss": 0.
|
493 |
"step": 680
|
494 |
},
|
495 |
{
|
496 |
"epoch": 1.0664605873261206,
|
497 |
-
"grad_norm": 0.
|
498 |
-
"learning_rate": 0.
|
499 |
-
"loss": 0.
|
500 |
"step": 690
|
501 |
},
|
502 |
{
|
503 |
"epoch": 1.0819165378670788,
|
504 |
-
"grad_norm": 0.
|
505 |
-
"learning_rate": 0.
|
506 |
-
"loss": 0.
|
507 |
"step": 700
|
508 |
},
|
509 |
{
|
510 |
"epoch": 1.0973724884080371,
|
511 |
-
"grad_norm": 0.
|
512 |
-
"learning_rate": 0.
|
513 |
-
"loss": 0.
|
514 |
"step": 710
|
515 |
},
|
516 |
{
|
517 |
"epoch": 1.1128284389489953,
|
518 |
-
"grad_norm": 0.
|
519 |
-
"learning_rate": 0.
|
520 |
-
"loss": 0.
|
521 |
"step": 720
|
522 |
},
|
523 |
{
|
524 |
"epoch": 1.1282843894899537,
|
525 |
-
"grad_norm": 0.
|
526 |
-
"learning_rate": 0.
|
527 |
-
"loss": 0.
|
528 |
"step": 730
|
529 |
},
|
530 |
{
|
531 |
"epoch": 1.1437403400309119,
|
532 |
-
"grad_norm": 0.
|
533 |
-
"learning_rate": 0.
|
534 |
-
"loss": 0.
|
535 |
"step": 740
|
536 |
},
|
537 |
{
|
538 |
"epoch": 1.1591962905718702,
|
539 |
-
"grad_norm": 0.
|
540 |
-
"learning_rate": 0.
|
541 |
-
"loss": 0.
|
542 |
"step": 750
|
543 |
},
|
544 |
{
|
545 |
"epoch": 1.1746522411128284,
|
546 |
-
"grad_norm": 0.
|
547 |
-
"learning_rate": 0.
|
548 |
-
"loss": 0.
|
549 |
"step": 760
|
550 |
},
|
551 |
{
|
552 |
"epoch": 1.1901081916537868,
|
553 |
-
"grad_norm": 0.
|
554 |
-
"learning_rate": 0.
|
555 |
-
"loss": 0.
|
556 |
"step": 770
|
557 |
},
|
558 |
{
|
559 |
"epoch": 1.205564142194745,
|
560 |
-
"grad_norm": 0.
|
561 |
-
"learning_rate": 0.
|
562 |
-
"loss": 0.
|
563 |
"step": 780
|
564 |
},
|
565 |
{
|
566 |
"epoch": 1.2210200927357033,
|
567 |
-
"grad_norm": 0.
|
568 |
-
"learning_rate": 0.
|
569 |
-
"loss": 0.
|
570 |
"step": 790
|
571 |
},
|
572 |
{
|
573 |
"epoch": 1.2364760432766615,
|
574 |
-
"grad_norm": 0.
|
575 |
-
"learning_rate": 0.
|
576 |
-
"loss": 0.
|
577 |
"step": 800
|
578 |
},
|
579 |
{
|
580 |
"epoch": 1.2519319938176197,
|
581 |
-
"grad_norm": 0.
|
582 |
-
"learning_rate": 0.
|
583 |
-
"loss": 0.
|
584 |
"step": 810
|
585 |
},
|
586 |
{
|
587 |
"epoch": 1.267387944358578,
|
588 |
-
"grad_norm": 0.
|
589 |
-
"learning_rate": 0.
|
590 |
-
"loss": 0.
|
591 |
"step": 820
|
592 |
},
|
593 |
{
|
594 |
"epoch": 1.2828438948995364,
|
595 |
-
"grad_norm": 0.
|
596 |
-
"learning_rate": 0.
|
597 |
-
"loss": 0.
|
598 |
"step": 830
|
599 |
},
|
600 |
{
|
601 |
"epoch": 1.2982998454404946,
|
602 |
-
"grad_norm": 0.
|
603 |
-
"learning_rate": 0.
|
604 |
-
"loss": 0.
|
605 |
"step": 840
|
606 |
},
|
607 |
{
|
608 |
"epoch": 1.3137557959814528,
|
609 |
-
"grad_norm": 0.
|
610 |
-
"learning_rate": 0.
|
611 |
-
"loss": 0.
|
612 |
"step": 850
|
613 |
},
|
614 |
{
|
615 |
"epoch": 1.3292117465224111,
|
616 |
-
"grad_norm": 0.
|
617 |
-
"learning_rate": 0.
|
618 |
-
"loss": 0.
|
619 |
"step": 860
|
620 |
},
|
621 |
{
|
622 |
"epoch": 1.3446676970633695,
|
623 |
-
"grad_norm": 0.
|
624 |
-
"learning_rate": 0.
|
625 |
-
"loss": 0.
|
626 |
"step": 870
|
627 |
},
|
628 |
{
|
629 |
"epoch": 1.3601236476043277,
|
630 |
-
"grad_norm": 0.
|
631 |
-
"learning_rate": 0.
|
632 |
-
"loss": 0.
|
633 |
"step": 880
|
634 |
},
|
635 |
{
|
636 |
"epoch": 1.3755795981452859,
|
637 |
-
"grad_norm": 0.
|
638 |
-
"learning_rate":
|
639 |
-
"loss": 0.
|
640 |
"step": 890
|
641 |
},
|
642 |
{
|
643 |
"epoch": 1.3910355486862442,
|
644 |
-
"grad_norm": 0.
|
645 |
-
"learning_rate":
|
646 |
-
"loss": 0.
|
647 |
"step": 900
|
648 |
},
|
649 |
{
|
650 |
"epoch": 1.4064914992272024,
|
651 |
-
"grad_norm": 0.
|
652 |
-
"learning_rate":
|
653 |
-
"loss": 0.
|
654 |
"step": 910
|
655 |
},
|
656 |
{
|
657 |
"epoch": 1.4219474497681608,
|
658 |
-
"grad_norm": 0.
|
659 |
-
"learning_rate":
|
660 |
-
"loss": 0.
|
661 |
"step": 920
|
662 |
},
|
663 |
{
|
664 |
"epoch": 1.437403400309119,
|
665 |
-
"grad_norm": 0.
|
666 |
-
"learning_rate":
|
667 |
-
"loss": 0.
|
668 |
"step": 930
|
669 |
},
|
670 |
{
|
671 |
"epoch": 1.4528593508500773,
|
672 |
-
"grad_norm": 0.
|
673 |
-
"learning_rate":
|
674 |
-
"loss": 0.
|
675 |
"step": 940
|
676 |
},
|
677 |
{
|
678 |
"epoch": 1.4683153013910355,
|
679 |
-
"grad_norm": 0.
|
680 |
-
"learning_rate":
|
681 |
-
"loss": 0.
|
682 |
"step": 950
|
683 |
},
|
684 |
{
|
685 |
"epoch": 1.4837712519319939,
|
686 |
-
"grad_norm": 0.
|
687 |
-
"learning_rate":
|
688 |
-
"loss": 0.
|
689 |
"step": 960
|
690 |
},
|
691 |
{
|
692 |
"epoch": 1.499227202472952,
|
693 |
-
"grad_norm": 0.
|
694 |
-
"learning_rate":
|
695 |
-
"loss": 0.
|
696 |
"step": 970
|
697 |
},
|
698 |
{
|
699 |
"epoch": 1.5146831530139102,
|
700 |
-
"grad_norm": 0.
|
701 |
-
"learning_rate":
|
702 |
-
"loss": 0.
|
703 |
"step": 980
|
704 |
},
|
705 |
{
|
706 |
"epoch": 1.5301391035548686,
|
707 |
-
"grad_norm": 0.
|
708 |
-
"learning_rate":
|
709 |
-
"loss": 0.
|
710 |
"step": 990
|
711 |
},
|
712 |
{
|
713 |
"epoch": 1.545595054095827,
|
714 |
-
"grad_norm": 0.
|
715 |
-
"learning_rate":
|
716 |
-
"loss": 0.
|
717 |
"step": 1000
|
718 |
},
|
719 |
{
|
720 |
"epoch": 1.5610510046367851,
|
721 |
-
"grad_norm": 0.
|
722 |
-
"learning_rate":
|
723 |
-
"loss": 0.
|
724 |
"step": 1010
|
725 |
},
|
726 |
{
|
727 |
"epoch": 1.5765069551777433,
|
728 |
-
"grad_norm": 0.
|
729 |
-
"learning_rate":
|
730 |
-
"loss": 0.
|
731 |
"step": 1020
|
732 |
},
|
733 |
{
|
734 |
"epoch": 1.5919629057187017,
|
735 |
-
"grad_norm": 0.
|
736 |
-
"learning_rate":
|
737 |
-
"loss": 0.
|
738 |
"step": 1030
|
739 |
},
|
740 |
{
|
741 |
"epoch": 1.60741885625966,
|
742 |
-
"grad_norm": 0.
|
743 |
-
"learning_rate":
|
744 |
-
"loss": 0.
|
745 |
"step": 1040
|
746 |
},
|
747 |
{
|
748 |
"epoch": 1.6228748068006182,
|
749 |
-
"grad_norm": 0.
|
750 |
-
"learning_rate":
|
751 |
-
"loss": 0.
|
752 |
"step": 1050
|
753 |
},
|
754 |
{
|
755 |
"epoch": 1.6383307573415764,
|
756 |
-
"grad_norm": 0.
|
757 |
-
"learning_rate":
|
758 |
-
"loss": 0.
|
759 |
"step": 1060
|
760 |
},
|
761 |
{
|
762 |
"epoch": 1.6537867078825348,
|
763 |
-
"grad_norm": 0.
|
764 |
-
"learning_rate":
|
765 |
-
"loss": 0.
|
766 |
"step": 1070
|
767 |
},
|
768 |
{
|
769 |
"epoch": 1.6692426584234932,
|
770 |
-
"grad_norm": 0.
|
771 |
-
"learning_rate":
|
772 |
-
"loss": 0.
|
773 |
"step": 1080
|
774 |
},
|
775 |
{
|
776 |
"epoch": 1.6846986089644513,
|
777 |
-
"grad_norm": 0.
|
778 |
-
"learning_rate":
|
779 |
-
"loss": 0.
|
780 |
"step": 1090
|
781 |
},
|
782 |
{
|
783 |
"epoch": 1.7001545595054095,
|
784 |
-
"grad_norm": 0.
|
785 |
-
"learning_rate":
|
786 |
-
"loss": 0.
|
787 |
"step": 1100
|
788 |
},
|
789 |
{
|
790 |
"epoch": 1.7156105100463679,
|
791 |
-
"grad_norm": 0.
|
792 |
-
"learning_rate":
|
793 |
-
"loss": 0.
|
794 |
"step": 1110
|
795 |
},
|
796 |
{
|
797 |
"epoch": 1.7310664605873263,
|
798 |
-
"grad_norm": 0.
|
799 |
-
"learning_rate":
|
800 |
-
"loss": 0.
|
801 |
"step": 1120
|
802 |
},
|
803 |
{
|
804 |
"epoch": 1.7465224111282844,
|
805 |
-
"grad_norm": 0.
|
806 |
-
"learning_rate":
|
807 |
-
"loss": 0.
|
808 |
"step": 1130
|
809 |
},
|
810 |
{
|
811 |
"epoch": 1.7619783616692426,
|
812 |
-
"grad_norm": 0.
|
813 |
-
"learning_rate":
|
814 |
-
"loss": 0.
|
815 |
"step": 1140
|
816 |
},
|
817 |
{
|
818 |
"epoch": 1.7774343122102008,
|
819 |
-
"grad_norm": 0.
|
820 |
-
"learning_rate":
|
821 |
-
"loss": 0.
|
822 |
"step": 1150
|
823 |
},
|
824 |
{
|
825 |
"epoch": 1.7928902627511591,
|
826 |
-
"grad_norm": 0.
|
827 |
-
"learning_rate":
|
828 |
-
"loss": 0.
|
829 |
"step": 1160
|
830 |
},
|
831 |
{
|
832 |
"epoch": 1.8083462132921175,
|
833 |
-
"grad_norm": 0.
|
834 |
-
"learning_rate":
|
835 |
-
"loss": 0.
|
836 |
"step": 1170
|
837 |
},
|
838 |
{
|
839 |
"epoch": 1.8238021638330757,
|
840 |
-
"grad_norm": 0.
|
841 |
-
"learning_rate":
|
842 |
-
"loss": 0.
|
843 |
"step": 1180
|
844 |
},
|
845 |
{
|
846 |
"epoch": 1.8392581143740339,
|
847 |
-
"grad_norm": 0.
|
848 |
-
"learning_rate":
|
849 |
-
"loss": 0.
|
850 |
"step": 1190
|
851 |
},
|
852 |
{
|
853 |
"epoch": 1.8547140649149922,
|
854 |
-
"grad_norm": 0.
|
855 |
-
"learning_rate":
|
856 |
-
"loss": 0.
|
857 |
"step": 1200
|
858 |
},
|
859 |
{
|
860 |
"epoch": 1.8701700154559506,
|
861 |
-
"grad_norm": 0.
|
862 |
-
"learning_rate":
|
863 |
-
"loss": 0.
|
864 |
"step": 1210
|
865 |
},
|
866 |
{
|
867 |
"epoch": 1.8856259659969088,
|
868 |
-
"grad_norm": 0.
|
869 |
-
"learning_rate":
|
870 |
-
"loss": 0.
|
871 |
"step": 1220
|
872 |
},
|
873 |
{
|
874 |
"epoch": 1.901081916537867,
|
875 |
-
"grad_norm": 0.
|
876 |
-
"learning_rate":
|
877 |
-
"loss": 0.
|
878 |
"step": 1230
|
879 |
},
|
880 |
{
|
881 |
"epoch": 1.9165378670788253,
|
882 |
-
"grad_norm": 0.
|
883 |
-
"learning_rate":
|
884 |
-
"loss": 0.
|
885 |
"step": 1240
|
886 |
},
|
887 |
{
|
888 |
"epoch": 1.9319938176197837,
|
889 |
-
"grad_norm": 0.
|
890 |
-
"learning_rate":
|
891 |
-
"loss": 0.
|
892 |
"step": 1250
|
893 |
},
|
894 |
{
|
895 |
"epoch": 1.947449768160742,
|
896 |
-
"grad_norm": 0.
|
897 |
-
"learning_rate": 8.
|
898 |
-
"loss": 0.
|
899 |
"step": 1260
|
900 |
},
|
901 |
{
|
902 |
"epoch": 1.9629057187017,
|
903 |
-
"grad_norm": 0.
|
904 |
-
"learning_rate": 5.921052631578947e-
|
905 |
-
"loss": 0.
|
906 |
"step": 1270
|
907 |
},
|
908 |
{
|
909 |
"epoch": 1.9783616692426584,
|
910 |
-
"grad_norm": 0.
|
911 |
-
"learning_rate": 3.
|
912 |
-
"loss": 0.
|
913 |
"step": 1280
|
914 |
},
|
915 |
{
|
916 |
"epoch": 1.9938176197836168,
|
917 |
-
"grad_norm": 0.
|
918 |
-
"learning_rate": 9.
|
919 |
-
"loss": 0.
|
920 |
"step": 1290
|
921 |
}
|
922 |
],
|
@@ -937,8 +937,8 @@
|
|
937 |
"attributes": {}
|
938 |
}
|
939 |
},
|
940 |
-
"total_flos": 1.
|
941 |
-
"train_batch_size":
|
942 |
"trial_name": null,
|
943 |
"trial_params": null
|
944 |
}
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 0.015455950540958269,
|
13 |
+
"grad_norm": 0.357046514749527,
|
14 |
+
"learning_rate": 0.0003846153846153846,
|
15 |
+
"loss": 1.5383,
|
16 |
"step": 10
|
17 |
},
|
18 |
{
|
19 |
"epoch": 0.030911901081916538,
|
20 |
+
"grad_norm": 0.11198900640010834,
|
21 |
+
"learning_rate": 0.0007692307692307692,
|
22 |
+
"loss": 1.1091,
|
23 |
"step": 20
|
24 |
},
|
25 |
{
|
26 |
"epoch": 0.04636785162287481,
|
27 |
+
"grad_norm": 0.056582603603601456,
|
28 |
+
"learning_rate": 0.001153846153846154,
|
29 |
+
"loss": 0.7939,
|
30 |
"step": 30
|
31 |
},
|
32 |
{
|
33 |
"epoch": 0.061823802163833076,
|
34 |
+
"grad_norm": 0.0210476852953434,
|
35 |
+
"learning_rate": 0.0015384615384615385,
|
36 |
+
"loss": 0.6165,
|
37 |
"step": 40
|
38 |
},
|
39 |
{
|
40 |
"epoch": 0.07727975270479134,
|
41 |
+
"grad_norm": 0.012083015404641628,
|
42 |
+
"learning_rate": 0.0019230769230769232,
|
43 |
+
"loss": 0.5624,
|
44 |
"step": 50
|
45 |
},
|
46 |
{
|
47 |
"epoch": 0.09273570324574962,
|
48 |
+
"grad_norm": 0.008505144156515598,
|
49 |
+
"learning_rate": 0.002307692307692308,
|
50 |
+
"loss": 0.5269,
|
51 |
"step": 60
|
52 |
},
|
53 |
{
|
54 |
"epoch": 0.10819165378670788,
|
55 |
+
"grad_norm": 0.0063809980638325214,
|
56 |
+
"learning_rate": 0.0026923076923076926,
|
57 |
+
"loss": 0.5059,
|
58 |
"step": 70
|
59 |
},
|
60 |
{
|
61 |
"epoch": 0.12364760432766615,
|
62 |
+
"grad_norm": 0.005832094699144363,
|
63 |
+
"learning_rate": 0.0029950657894736842,
|
64 |
+
"loss": 0.5202,
|
65 |
"step": 80
|
66 |
},
|
67 |
{
|
68 |
"epoch": 0.1391035548686244,
|
69 |
+
"grad_norm": 0.004662094172090292,
|
70 |
+
"learning_rate": 0.0029703947368421055,
|
71 |
+
"loss": 0.5087,
|
72 |
"step": 90
|
73 |
},
|
74 |
{
|
75 |
"epoch": 0.1545595054095827,
|
76 |
+
"grad_norm": 0.004813206382095814,
|
77 |
+
"learning_rate": 0.0029457236842105267,
|
78 |
+
"loss": 0.4979,
|
79 |
"step": 100
|
80 |
},
|
81 |
{
|
82 |
"epoch": 0.17001545595054096,
|
83 |
+
"grad_norm": 0.003981301095336676,
|
84 |
+
"learning_rate": 0.0029210526315789475,
|
85 |
+
"loss": 0.4833,
|
86 |
"step": 110
|
87 |
},
|
88 |
{
|
89 |
"epoch": 0.18547140649149924,
|
90 |
+
"grad_norm": 0.0037942214403301477,
|
91 |
+
"learning_rate": 0.0028963815789473687,
|
92 |
+
"loss": 0.4842,
|
93 |
"step": 120
|
94 |
},
|
95 |
{
|
96 |
"epoch": 0.2009273570324575,
|
97 |
+
"grad_norm": 0.0041742450557649136,
|
98 |
+
"learning_rate": 0.0028717105263157895,
|
99 |
+
"loss": 0.4818,
|
100 |
"step": 130
|
101 |
},
|
102 |
{
|
103 |
"epoch": 0.21638330757341576,
|
104 |
+
"grad_norm": 0.005099099595099688,
|
105 |
+
"learning_rate": 0.0028470394736842108,
|
106 |
+
"loss": 0.4809,
|
107 |
"step": 140
|
108 |
},
|
109 |
{
|
110 |
"epoch": 0.23183925811437403,
|
111 |
+
"grad_norm": 0.0031047100201249123,
|
112 |
+
"learning_rate": 0.0028223684210526316,
|
113 |
+
"loss": 0.5016,
|
114 |
"step": 150
|
115 |
},
|
116 |
{
|
117 |
"epoch": 0.2472952086553323,
|
118 |
+
"grad_norm": 0.0036040199920535088,
|
119 |
+
"learning_rate": 0.002797697368421053,
|
120 |
+
"loss": 0.4775,
|
121 |
"step": 160
|
122 |
},
|
123 |
{
|
124 |
"epoch": 0.26275115919629055,
|
125 |
+
"grad_norm": 0.0033861789852380753,
|
126 |
+
"learning_rate": 0.0027730263157894736,
|
127 |
+
"loss": 0.4784,
|
128 |
"step": 170
|
129 |
},
|
130 |
{
|
131 |
"epoch": 0.2782071097372488,
|
132 |
+
"grad_norm": 0.003118926426395774,
|
133 |
+
"learning_rate": 0.002748355263157895,
|
134 |
+
"loss": 0.4962,
|
135 |
"step": 180
|
136 |
},
|
137 |
{
|
138 |
"epoch": 0.2936630602782071,
|
139 |
+
"grad_norm": 0.0035265563055872917,
|
140 |
+
"learning_rate": 0.002723684210526316,
|
141 |
+
"loss": 0.4829,
|
142 |
"step": 190
|
143 |
},
|
144 |
{
|
145 |
"epoch": 0.3091190108191654,
|
146 |
+
"grad_norm": 0.0035475995391607285,
|
147 |
+
"learning_rate": 0.002699013157894737,
|
148 |
+
"loss": 0.485,
|
149 |
"step": 200
|
150 |
},
|
151 |
{
|
152 |
"epoch": 0.32457496136012365,
|
153 |
+
"grad_norm": 0.0030264686793088913,
|
154 |
+
"learning_rate": 0.002674342105263158,
|
155 |
+
"loss": 0.4681,
|
156 |
"step": 210
|
157 |
},
|
158 |
{
|
159 |
"epoch": 0.3400309119010819,
|
160 |
+
"grad_norm": 0.0033854299690574408,
|
161 |
+
"learning_rate": 0.002649671052631579,
|
162 |
+
"loss": 0.4805,
|
163 |
"step": 220
|
164 |
},
|
165 |
{
|
166 |
"epoch": 0.3554868624420402,
|
167 |
+
"grad_norm": 0.0029569112230092287,
|
168 |
+
"learning_rate": 0.002625,
|
169 |
+
"loss": 0.4688,
|
170 |
"step": 230
|
171 |
},
|
172 |
{
|
173 |
"epoch": 0.37094281298299847,
|
174 |
+
"grad_norm": 0.0032272525131702423,
|
175 |
+
"learning_rate": 0.002600328947368421,
|
176 |
+
"loss": 0.4752,
|
177 |
"step": 240
|
178 |
},
|
179 |
{
|
180 |
"epoch": 0.38639876352395675,
|
181 |
+
"grad_norm": 0.003502602456137538,
|
182 |
+
"learning_rate": 0.002575657894736842,
|
183 |
+
"loss": 0.4699,
|
184 |
"step": 250
|
185 |
},
|
186 |
{
|
187 |
"epoch": 0.401854714064915,
|
188 |
+
"grad_norm": 0.0031522298231720924,
|
189 |
+
"learning_rate": 0.002550986842105263,
|
190 |
+
"loss": 0.4756,
|
191 |
"step": 260
|
192 |
},
|
193 |
{
|
194 |
"epoch": 0.41731066460587324,
|
195 |
+
"grad_norm": 0.003098264569416642,
|
196 |
+
"learning_rate": 0.0025263157894736842,
|
197 |
+
"loss": 0.4574,
|
198 |
"step": 270
|
199 |
},
|
200 |
{
|
201 |
"epoch": 0.4327666151468315,
|
202 |
+
"grad_norm": 0.0025676521472632885,
|
203 |
+
"learning_rate": 0.0025016447368421055,
|
204 |
+
"loss": 0.4779,
|
205 |
"step": 280
|
206 |
},
|
207 |
{
|
208 |
"epoch": 0.4482225656877898,
|
209 |
+
"grad_norm": 0.0034302272833883762,
|
210 |
+
"learning_rate": 0.0024769736842105263,
|
211 |
+
"loss": 0.4729,
|
212 |
"step": 290
|
213 |
},
|
214 |
{
|
215 |
"epoch": 0.46367851622874806,
|
216 |
+
"grad_norm": 0.003159865504130721,
|
217 |
+
"learning_rate": 0.0024523026315789475,
|
218 |
+
"loss": 0.4715,
|
219 |
"step": 300
|
220 |
},
|
221 |
{
|
222 |
"epoch": 0.47913446676970634,
|
223 |
+
"grad_norm": 0.003168923780322075,
|
224 |
+
"learning_rate": 0.0024276315789473683,
|
225 |
+
"loss": 0.4764,
|
226 |
"step": 310
|
227 |
},
|
228 |
{
|
229 |
"epoch": 0.4945904173106646,
|
230 |
+
"grad_norm": 0.0034859515726566315,
|
231 |
+
"learning_rate": 0.0024029605263157896,
|
232 |
+
"loss": 0.4652,
|
233 |
"step": 320
|
234 |
},
|
235 |
{
|
236 |
"epoch": 0.5100463678516228,
|
237 |
+
"grad_norm": 0.003067239187657833,
|
238 |
+
"learning_rate": 0.0023782894736842104,
|
239 |
+
"loss": 0.4648,
|
240 |
"step": 330
|
241 |
},
|
242 |
{
|
243 |
"epoch": 0.5255023183925811,
|
244 |
+
"grad_norm": 0.0032223982270807028,
|
245 |
+
"learning_rate": 0.0023536184210526316,
|
246 |
+
"loss": 0.4725,
|
247 |
"step": 340
|
248 |
},
|
249 |
{
|
250 |
"epoch": 0.5409582689335394,
|
251 |
+
"grad_norm": 0.0027090355288237333,
|
252 |
+
"learning_rate": 0.0023289473684210524,
|
253 |
+
"loss": 0.4704,
|
254 |
"step": 350
|
255 |
},
|
256 |
{
|
257 |
"epoch": 0.5564142194744977,
|
258 |
+
"grad_norm": 0.003484300570562482,
|
259 |
+
"learning_rate": 0.0023042763157894736,
|
260 |
+
"loss": 0.4616,
|
261 |
"step": 360
|
262 |
},
|
263 |
{
|
264 |
"epoch": 0.5718701700154559,
|
265 |
+
"grad_norm": 0.003339330432936549,
|
266 |
+
"learning_rate": 0.0022796052631578944,
|
267 |
+
"loss": 0.4665,
|
268 |
"step": 370
|
269 |
},
|
270 |
{
|
271 |
"epoch": 0.5873261205564142,
|
272 |
+
"grad_norm": 0.0029797593597322702,
|
273 |
+
"learning_rate": 0.002254934210526316,
|
274 |
+
"loss": 0.4573,
|
275 |
"step": 380
|
276 |
},
|
277 |
{
|
278 |
"epoch": 0.6027820710973725,
|
279 |
+
"grad_norm": 0.0030033981893211603,
|
280 |
+
"learning_rate": 0.002230263157894737,
|
281 |
+
"loss": 0.4618,
|
282 |
"step": 390
|
283 |
},
|
284 |
{
|
285 |
"epoch": 0.6182380216383307,
|
286 |
+
"grad_norm": 0.005113155115395784,
|
287 |
+
"learning_rate": 0.002205592105263158,
|
288 |
+
"loss": 0.4589,
|
289 |
"step": 400
|
290 |
},
|
291 |
{
|
292 |
"epoch": 0.633693972179289,
|
293 |
+
"grad_norm": 0.002975397277623415,
|
294 |
+
"learning_rate": 0.002180921052631579,
|
295 |
+
"loss": 0.4765,
|
296 |
"step": 410
|
297 |
},
|
298 |
{
|
299 |
"epoch": 0.6491499227202473,
|
300 |
+
"grad_norm": 0.004753004759550095,
|
301 |
+
"learning_rate": 0.00215625,
|
302 |
+
"loss": 0.4631,
|
303 |
"step": 420
|
304 |
},
|
305 |
{
|
306 |
"epoch": 0.6646058732612056,
|
307 |
+
"grad_norm": 0.003564928425475955,
|
308 |
+
"learning_rate": 0.002131578947368421,
|
309 |
+
"loss": 0.4488,
|
310 |
"step": 430
|
311 |
},
|
312 |
{
|
313 |
"epoch": 0.6800618238021638,
|
314 |
+
"grad_norm": 0.0032665496692061424,
|
315 |
+
"learning_rate": 0.0021069078947368422,
|
316 |
+
"loss": 0.457,
|
317 |
"step": 440
|
318 |
},
|
319 |
{
|
320 |
"epoch": 0.6955177743431221,
|
321 |
+
"grad_norm": 0.0030079709831625223,
|
322 |
+
"learning_rate": 0.002082236842105263,
|
323 |
+
"loss": 0.4667,
|
324 |
"step": 450
|
325 |
},
|
326 |
{
|
327 |
"epoch": 0.7109737248840804,
|
328 |
+
"grad_norm": 0.0025733078364282846,
|
329 |
+
"learning_rate": 0.0020575657894736843,
|
330 |
+
"loss": 0.4667,
|
331 |
"step": 460
|
332 |
},
|
333 |
{
|
334 |
"epoch": 0.7264296754250387,
|
335 |
+
"grad_norm": 0.00270587345585227,
|
336 |
+
"learning_rate": 0.0020328947368421055,
|
337 |
+
"loss": 0.4679,
|
338 |
"step": 470
|
339 |
},
|
340 |
{
|
341 |
"epoch": 0.7418856259659969,
|
342 |
+
"grad_norm": 0.00273908581584692,
|
343 |
+
"learning_rate": 0.0020082236842105263,
|
344 |
+
"loss": 0.4694,
|
345 |
"step": 480
|
346 |
},
|
347 |
{
|
348 |
"epoch": 0.7573415765069552,
|
349 |
+
"grad_norm": 0.002720112446695566,
|
350 |
+
"learning_rate": 0.0019835526315789475,
|
351 |
+
"loss": 0.4513,
|
352 |
"step": 490
|
353 |
},
|
354 |
{
|
355 |
"epoch": 0.7727975270479135,
|
356 |
+
"grad_norm": 0.0028910296969115734,
|
357 |
+
"learning_rate": 0.0019588815789473683,
|
358 |
+
"loss": 0.4592,
|
359 |
"step": 500
|
360 |
},
|
361 |
{
|
362 |
"epoch": 0.7882534775888718,
|
363 |
+
"grad_norm": 0.003034258494153619,
|
364 |
+
"learning_rate": 0.0019342105263157896,
|
365 |
+
"loss": 0.4611,
|
366 |
"step": 510
|
367 |
},
|
368 |
{
|
369 |
"epoch": 0.80370942812983,
|
370 |
+
"grad_norm": 0.0030727661214768887,
|
371 |
+
"learning_rate": 0.0019095394736842106,
|
372 |
+
"loss": 0.463,
|
373 |
"step": 520
|
374 |
},
|
375 |
{
|
376 |
"epoch": 0.8191653786707882,
|
377 |
+
"grad_norm": 0.0026562565471976995,
|
378 |
+
"learning_rate": 0.0018848684210526316,
|
379 |
+
"loss": 0.469,
|
380 |
"step": 530
|
381 |
},
|
382 |
{
|
383 |
"epoch": 0.8346213292117465,
|
384 |
+
"grad_norm": 0.002964869374409318,
|
385 |
+
"learning_rate": 0.0018601973684210526,
|
386 |
+
"loss": 0.462,
|
387 |
"step": 540
|
388 |
},
|
389 |
{
|
390 |
"epoch": 0.8500772797527048,
|
391 |
+
"grad_norm": 0.0029133500065654516,
|
392 |
+
"learning_rate": 0.0018355263157894736,
|
393 |
+
"loss": 0.4678,
|
394 |
"step": 550
|
395 |
},
|
396 |
{
|
397 |
"epoch": 0.865533230293663,
|
398 |
+
"grad_norm": 0.002890991512686014,
|
399 |
+
"learning_rate": 0.0018108552631578947,
|
400 |
+
"loss": 0.4646,
|
401 |
"step": 560
|
402 |
},
|
403 |
{
|
404 |
"epoch": 0.8809891808346213,
|
405 |
+
"grad_norm": 0.0025943962391465902,
|
406 |
+
"learning_rate": 0.001786184210526316,
|
407 |
+
"loss": 0.4645,
|
408 |
"step": 570
|
409 |
},
|
410 |
{
|
411 |
"epoch": 0.8964451313755796,
|
412 |
+
"grad_norm": 0.0027450553607195616,
|
413 |
+
"learning_rate": 0.001761513157894737,
|
414 |
+
"loss": 0.4691,
|
415 |
"step": 580
|
416 |
},
|
417 |
{
|
418 |
"epoch": 0.9119010819165378,
|
419 |
+
"grad_norm": 0.0027814917266368866,
|
420 |
+
"learning_rate": 0.001736842105263158,
|
421 |
+
"loss": 0.4549,
|
422 |
"step": 590
|
423 |
},
|
424 |
{
|
425 |
"epoch": 0.9273570324574961,
|
426 |
+
"grad_norm": 0.0030699821654707193,
|
427 |
+
"learning_rate": 0.001712171052631579,
|
428 |
+
"loss": 0.4694,
|
429 |
"step": 600
|
430 |
},
|
431 |
{
|
432 |
"epoch": 0.9428129829984544,
|
433 |
+
"grad_norm": 0.002675461582839489,
|
434 |
+
"learning_rate": 0.0016875,
|
435 |
+
"loss": 0.4593,
|
436 |
"step": 610
|
437 |
},
|
438 |
{
|
439 |
"epoch": 0.9582689335394127,
|
440 |
+
"grad_norm": 0.0026055267080664635,
|
441 |
+
"learning_rate": 0.001662828947368421,
|
442 |
+
"loss": 0.4681,
|
443 |
"step": 620
|
444 |
},
|
445 |
{
|
446 |
"epoch": 0.973724884080371,
|
447 |
+
"grad_norm": 0.002623435575515032,
|
448 |
+
"learning_rate": 0.001638157894736842,
|
449 |
+
"loss": 0.46,
|
450 |
"step": 630
|
451 |
},
|
452 |
{
|
453 |
"epoch": 0.9891808346213292,
|
454 |
+
"grad_norm": 0.0023981425911188126,
|
455 |
+
"learning_rate": 0.001613486842105263,
|
456 |
+
"loss": 0.4587,
|
457 |
"step": 640
|
458 |
},
|
459 |
{
|
460 |
"epoch": 1.0,
|
461 |
+
"eval_loss": 0.9165626764297485,
|
462 |
+
"eval_runtime": 1353.6255,
|
463 |
+
"eval_samples_per_second": 7.648,
|
464 |
+
"eval_steps_per_second": 0.478,
|
465 |
"step": 647
|
466 |
},
|
467 |
{
|
468 |
"epoch": 1.0046367851622875,
|
469 |
+
"grad_norm": 0.002703867619857192,
|
470 |
+
"learning_rate": 0.001588815789473684,
|
471 |
+
"loss": 0.4565,
|
472 |
"step": 650
|
473 |
},
|
474 |
{
|
475 |
"epoch": 1.0200927357032457,
|
476 |
+
"grad_norm": 0.002686214866116643,
|
477 |
+
"learning_rate": 0.0015641447368421055,
|
478 |
+
"loss": 0.4656,
|
479 |
"step": 660
|
480 |
},
|
481 |
{
|
482 |
"epoch": 1.035548686244204,
|
483 |
+
"grad_norm": 0.002944634296000004,
|
484 |
+
"learning_rate": 0.0015394736842105265,
|
485 |
+
"loss": 0.4609,
|
486 |
"step": 670
|
487 |
},
|
488 |
{
|
489 |
"epoch": 1.0510046367851622,
|
490 |
+
"grad_norm": 0.002919598249718547,
|
491 |
+
"learning_rate": 0.0015148026315789475,
|
492 |
+
"loss": 0.462,
|
493 |
"step": 680
|
494 |
},
|
495 |
{
|
496 |
"epoch": 1.0664605873261206,
|
497 |
+
"grad_norm": 0.0027975935954600573,
|
498 |
+
"learning_rate": 0.0014901315789473686,
|
499 |
+
"loss": 0.455,
|
500 |
"step": 690
|
501 |
},
|
502 |
{
|
503 |
"epoch": 1.0819165378670788,
|
504 |
+
"grad_norm": 0.002747561549767852,
|
505 |
+
"learning_rate": 0.0014654605263157896,
|
506 |
+
"loss": 0.4556,
|
507 |
"step": 700
|
508 |
},
|
509 |
{
|
510 |
"epoch": 1.0973724884080371,
|
511 |
+
"grad_norm": 0.0029210918582975864,
|
512 |
+
"learning_rate": 0.0014407894736842106,
|
513 |
+
"loss": 0.4486,
|
514 |
"step": 710
|
515 |
},
|
516 |
{
|
517 |
"epoch": 1.1128284389489953,
|
518 |
+
"grad_norm": 0.0026143298018723726,
|
519 |
+
"learning_rate": 0.0014161184210526316,
|
520 |
+
"loss": 0.4593,
|
521 |
"step": 720
|
522 |
},
|
523 |
{
|
524 |
"epoch": 1.1282843894899537,
|
525 |
+
"grad_norm": 0.002351797418668866,
|
526 |
+
"learning_rate": 0.0013914473684210526,
|
527 |
+
"loss": 0.4419,
|
528 |
"step": 730
|
529 |
},
|
530 |
{
|
531 |
"epoch": 1.1437403400309119,
|
532 |
+
"grad_norm": 0.0029544688295572996,
|
533 |
+
"learning_rate": 0.0013667763157894737,
|
534 |
+
"loss": 0.4535,
|
535 |
"step": 740
|
536 |
},
|
537 |
{
|
538 |
"epoch": 1.1591962905718702,
|
539 |
+
"grad_norm": 0.0025962782092392445,
|
540 |
+
"learning_rate": 0.0013421052631578947,
|
541 |
+
"loss": 0.4454,
|
542 |
"step": 750
|
543 |
},
|
544 |
{
|
545 |
"epoch": 1.1746522411128284,
|
546 |
+
"grad_norm": 0.0026020314544439316,
|
547 |
+
"learning_rate": 0.0013174342105263157,
|
548 |
+
"loss": 0.4569,
|
549 |
"step": 760
|
550 |
},
|
551 |
{
|
552 |
"epoch": 1.1901081916537868,
|
553 |
+
"grad_norm": 0.00269780564121902,
|
554 |
+
"learning_rate": 0.0012927631578947367,
|
555 |
+
"loss": 0.4657,
|
556 |
"step": 770
|
557 |
},
|
558 |
{
|
559 |
"epoch": 1.205564142194745,
|
560 |
+
"grad_norm": 0.0027555320411920547,
|
561 |
+
"learning_rate": 0.001268092105263158,
|
562 |
+
"loss": 0.4546,
|
563 |
"step": 780
|
564 |
},
|
565 |
{
|
566 |
"epoch": 1.2210200927357033,
|
567 |
+
"grad_norm": 0.002603672444820404,
|
568 |
+
"learning_rate": 0.001243421052631579,
|
569 |
+
"loss": 0.4547,
|
570 |
"step": 790
|
571 |
},
|
572 |
{
|
573 |
"epoch": 1.2364760432766615,
|
574 |
+
"grad_norm": 0.002504123141989112,
|
575 |
+
"learning_rate": 0.00121875,
|
576 |
+
"loss": 0.4627,
|
577 |
"step": 800
|
578 |
},
|
579 |
{
|
580 |
"epoch": 1.2519319938176197,
|
581 |
+
"grad_norm": 0.003078003181144595,
|
582 |
+
"learning_rate": 0.001194078947368421,
|
583 |
+
"loss": 0.4504,
|
584 |
"step": 810
|
585 |
},
|
586 |
{
|
587 |
"epoch": 1.267387944358578,
|
588 |
+
"grad_norm": 0.0032601715065538883,
|
589 |
+
"learning_rate": 0.001169407894736842,
|
590 |
+
"loss": 0.4508,
|
591 |
"step": 820
|
592 |
},
|
593 |
{
|
594 |
"epoch": 1.2828438948995364,
|
595 |
+
"grad_norm": 0.003114907769486308,
|
596 |
+
"learning_rate": 0.0011447368421052633,
|
597 |
+
"loss": 0.4448,
|
598 |
"step": 830
|
599 |
},
|
600 |
{
|
601 |
"epoch": 1.2982998454404946,
|
602 |
+
"grad_norm": 0.002611513016745448,
|
603 |
+
"learning_rate": 0.0011200657894736843,
|
604 |
+
"loss": 0.4611,
|
605 |
"step": 840
|
606 |
},
|
607 |
{
|
608 |
"epoch": 1.3137557959814528,
|
609 |
+
"grad_norm": 0.0028356926050037146,
|
610 |
+
"learning_rate": 0.0010953947368421053,
|
611 |
+
"loss": 0.4543,
|
612 |
"step": 850
|
613 |
},
|
614 |
{
|
615 |
"epoch": 1.3292117465224111,
|
616 |
+
"grad_norm": 0.0028607589192688465,
|
617 |
+
"learning_rate": 0.0010707236842105263,
|
618 |
+
"loss": 0.4729,
|
619 |
"step": 860
|
620 |
},
|
621 |
{
|
622 |
"epoch": 1.3446676970633695,
|
623 |
+
"grad_norm": 0.00289659365080297,
|
624 |
+
"learning_rate": 0.0010460526315789474,
|
625 |
+
"loss": 0.4567,
|
626 |
"step": 870
|
627 |
},
|
628 |
{
|
629 |
"epoch": 1.3601236476043277,
|
630 |
+
"grad_norm": 0.002599680330604315,
|
631 |
+
"learning_rate": 0.0010213815789473686,
|
632 |
+
"loss": 0.456,
|
633 |
"step": 880
|
634 |
},
|
635 |
{
|
636 |
"epoch": 1.3755795981452859,
|
637 |
+
"grad_norm": 0.0026973742060363293,
|
638 |
+
"learning_rate": 0.0009967105263157896,
|
639 |
+
"loss": 0.4552,
|
640 |
"step": 890
|
641 |
},
|
642 |
{
|
643 |
"epoch": 1.3910355486862442,
|
644 |
+
"grad_norm": 0.0025935762096196413,
|
645 |
+
"learning_rate": 0.0009720394736842105,
|
646 |
+
"loss": 0.4589,
|
647 |
"step": 900
|
648 |
},
|
649 |
{
|
650 |
"epoch": 1.4064914992272024,
|
651 |
+
"grad_norm": 0.0026942496187984943,
|
652 |
+
"learning_rate": 0.0009473684210526315,
|
653 |
+
"loss": 0.455,
|
654 |
"step": 910
|
655 |
},
|
656 |
{
|
657 |
"epoch": 1.4219474497681608,
|
658 |
+
"grad_norm": 0.0027507098857313395,
|
659 |
+
"learning_rate": 0.0009226973684210528,
|
660 |
+
"loss": 0.4627,
|
661 |
"step": 920
|
662 |
},
|
663 |
{
|
664 |
"epoch": 1.437403400309119,
|
665 |
+
"grad_norm": 0.0029431770090013742,
|
666 |
+
"learning_rate": 0.0008980263157894738,
|
667 |
+
"loss": 0.4557,
|
668 |
"step": 930
|
669 |
},
|
670 |
{
|
671 |
"epoch": 1.4528593508500773,
|
672 |
+
"grad_norm": 0.002638396341353655,
|
673 |
+
"learning_rate": 0.0008733552631578948,
|
674 |
+
"loss": 0.4546,
|
675 |
"step": 940
|
676 |
},
|
677 |
{
|
678 |
"epoch": 1.4683153013910355,
|
679 |
+
"grad_norm": 0.0026191219221800566,
|
680 |
+
"learning_rate": 0.0008486842105263158,
|
681 |
+
"loss": 0.4557,
|
682 |
"step": 950
|
683 |
},
|
684 |
{
|
685 |
"epoch": 1.4837712519319939,
|
686 |
+
"grad_norm": 0.002677230630069971,
|
687 |
+
"learning_rate": 0.0008240131578947368,
|
688 |
+
"loss": 0.4632,
|
689 |
"step": 960
|
690 |
},
|
691 |
{
|
692 |
"epoch": 1.499227202472952,
|
693 |
+
"grad_norm": 0.00285891885869205,
|
694 |
+
"learning_rate": 0.000799342105263158,
|
695 |
+
"loss": 0.4581,
|
696 |
"step": 970
|
697 |
},
|
698 |
{
|
699 |
"epoch": 1.5146831530139102,
|
700 |
+
"grad_norm": 0.0026907038409262896,
|
701 |
+
"learning_rate": 0.000774671052631579,
|
702 |
+
"loss": 0.4509,
|
703 |
"step": 980
|
704 |
},
|
705 |
{
|
706 |
"epoch": 1.5301391035548686,
|
707 |
+
"grad_norm": 0.0024703822564333677,
|
708 |
+
"learning_rate": 0.00075,
|
709 |
+
"loss": 0.4481,
|
710 |
"step": 990
|
711 |
},
|
712 |
{
|
713 |
"epoch": 1.545595054095827,
|
714 |
+
"grad_norm": 0.002853216603398323,
|
715 |
+
"learning_rate": 0.000725328947368421,
|
716 |
+
"loss": 0.4438,
|
717 |
"step": 1000
|
718 |
},
|
719 |
{
|
720 |
"epoch": 1.5610510046367851,
|
721 |
+
"grad_norm": 0.002754925051704049,
|
722 |
+
"learning_rate": 0.0007006578947368422,
|
723 |
+
"loss": 0.4656,
|
724 |
"step": 1010
|
725 |
},
|
726 |
{
|
727 |
"epoch": 1.5765069551777433,
|
728 |
+
"grad_norm": 0.002468267921358347,
|
729 |
+
"learning_rate": 0.0006759868421052632,
|
730 |
+
"loss": 0.4515,
|
731 |
"step": 1020
|
732 |
},
|
733 |
{
|
734 |
"epoch": 1.5919629057187017,
|
735 |
+
"grad_norm": 0.002553540049120784,
|
736 |
+
"learning_rate": 0.0006513157894736842,
|
737 |
+
"loss": 0.4506,
|
738 |
"step": 1030
|
739 |
},
|
740 |
{
|
741 |
"epoch": 1.60741885625966,
|
742 |
+
"grad_norm": 0.0030136853456497192,
|
743 |
+
"learning_rate": 0.0006266447368421052,
|
744 |
+
"loss": 0.4552,
|
745 |
"step": 1040
|
746 |
},
|
747 |
{
|
748 |
"epoch": 1.6228748068006182,
|
749 |
+
"grad_norm": 0.002497268607839942,
|
750 |
+
"learning_rate": 0.0006019736842105263,
|
751 |
+
"loss": 0.4506,
|
752 |
"step": 1050
|
753 |
},
|
754 |
{
|
755 |
"epoch": 1.6383307573415764,
|
756 |
+
"grad_norm": 0.002612602198496461,
|
757 |
+
"learning_rate": 0.0005773026315789474,
|
758 |
+
"loss": 0.4519,
|
759 |
"step": 1060
|
760 |
},
|
761 |
{
|
762 |
"epoch": 1.6537867078825348,
|
763 |
+
"grad_norm": 0.0023622452281415462,
|
764 |
+
"learning_rate": 0.0005526315789473684,
|
765 |
+
"loss": 0.4446,
|
766 |
"step": 1070
|
767 |
},
|
768 |
{
|
769 |
"epoch": 1.6692426584234932,
|
770 |
+
"grad_norm": 0.0023850842844694853,
|
771 |
+
"learning_rate": 0.0005279605263157895,
|
772 |
+
"loss": 0.4533,
|
773 |
"step": 1080
|
774 |
},
|
775 |
{
|
776 |
"epoch": 1.6846986089644513,
|
777 |
+
"grad_norm": 0.002770961495116353,
|
778 |
+
"learning_rate": 0.0005032894736842105,
|
779 |
+
"loss": 0.4523,
|
780 |
"step": 1090
|
781 |
},
|
782 |
{
|
783 |
"epoch": 1.7001545595054095,
|
784 |
+
"grad_norm": 0.002901398576796055,
|
785 |
+
"learning_rate": 0.0004786184210526316,
|
786 |
+
"loss": 0.4472,
|
787 |
"step": 1100
|
788 |
},
|
789 |
{
|
790 |
"epoch": 1.7156105100463679,
|
791 |
+
"grad_norm": 0.002840624190866947,
|
792 |
+
"learning_rate": 0.0004539473684210526,
|
793 |
+
"loss": 0.4496,
|
794 |
"step": 1110
|
795 |
},
|
796 |
{
|
797 |
"epoch": 1.7310664605873263,
|
798 |
+
"grad_norm": 0.002452421234920621,
|
799 |
+
"learning_rate": 0.00042927631578947365,
|
800 |
+
"loss": 0.4553,
|
801 |
"step": 1120
|
802 |
},
|
803 |
{
|
804 |
"epoch": 1.7465224111282844,
|
805 |
+
"grad_norm": 0.0025857773143798113,
|
806 |
+
"learning_rate": 0.0004046052631578948,
|
807 |
+
"loss": 0.4504,
|
808 |
"step": 1130
|
809 |
},
|
810 |
{
|
811 |
"epoch": 1.7619783616692426,
|
812 |
+
"grad_norm": 0.002501491457223892,
|
813 |
+
"learning_rate": 0.0003799342105263158,
|
814 |
+
"loss": 0.4479,
|
815 |
"step": 1140
|
816 |
},
|
817 |
{
|
818 |
"epoch": 1.7774343122102008,
|
819 |
+
"grad_norm": 0.002639561193063855,
|
820 |
+
"learning_rate": 0.0003552631578947368,
|
821 |
+
"loss": 0.4627,
|
822 |
"step": 1150
|
823 |
},
|
824 |
{
|
825 |
"epoch": 1.7928902627511591,
|
826 |
+
"grad_norm": 0.002627423033118248,
|
827 |
+
"learning_rate": 0.0003305921052631579,
|
828 |
+
"loss": 0.4496,
|
829 |
"step": 1160
|
830 |
},
|
831 |
{
|
832 |
"epoch": 1.8083462132921175,
|
833 |
+
"grad_norm": 0.0027368138544261456,
|
834 |
+
"learning_rate": 0.00030592105263157896,
|
835 |
+
"loss": 0.4567,
|
836 |
"step": 1170
|
837 |
},
|
838 |
{
|
839 |
"epoch": 1.8238021638330757,
|
840 |
+
"grad_norm": 0.0022819822188466787,
|
841 |
+
"learning_rate": 0.00028125000000000003,
|
842 |
+
"loss": 0.4546,
|
843 |
"step": 1180
|
844 |
},
|
845 |
{
|
846 |
"epoch": 1.8392581143740339,
|
847 |
+
"grad_norm": 0.0024920173455029726,
|
848 |
+
"learning_rate": 0.00025657894736842105,
|
849 |
+
"loss": 0.4571,
|
850 |
"step": 1190
|
851 |
},
|
852 |
{
|
853 |
"epoch": 1.8547140649149922,
|
854 |
+
"grad_norm": 0.002788729965686798,
|
855 |
+
"learning_rate": 0.00023190789473684213,
|
856 |
+
"loss": 0.4597,
|
857 |
"step": 1200
|
858 |
},
|
859 |
{
|
860 |
"epoch": 1.8701700154559506,
|
861 |
+
"grad_norm": 0.00281331455335021,
|
862 |
+
"learning_rate": 0.00020723684210526317,
|
863 |
+
"loss": 0.4561,
|
864 |
"step": 1210
|
865 |
},
|
866 |
{
|
867 |
"epoch": 1.8856259659969088,
|
868 |
+
"grad_norm": 0.0028766875620931387,
|
869 |
+
"learning_rate": 0.00018256578947368422,
|
870 |
+
"loss": 0.4626,
|
871 |
"step": 1220
|
872 |
},
|
873 |
{
|
874 |
"epoch": 1.901081916537867,
|
875 |
+
"grad_norm": 0.0027803743723779917,
|
876 |
+
"learning_rate": 0.00015789473684210527,
|
877 |
+
"loss": 0.4441,
|
878 |
"step": 1230
|
879 |
},
|
880 |
{
|
881 |
"epoch": 1.9165378670788253,
|
882 |
+
"grad_norm": 0.0023476784117519855,
|
883 |
+
"learning_rate": 0.0001332236842105263,
|
884 |
+
"loss": 0.4529,
|
885 |
"step": 1240
|
886 |
},
|
887 |
{
|
888 |
"epoch": 1.9319938176197837,
|
889 |
+
"grad_norm": 0.003161880187690258,
|
890 |
+
"learning_rate": 0.00010855263157894737,
|
891 |
+
"loss": 0.4489,
|
892 |
"step": 1250
|
893 |
},
|
894 |
{
|
895 |
"epoch": 1.947449768160742,
|
896 |
+
"grad_norm": 0.0026641101576387882,
|
897 |
+
"learning_rate": 8.388157894736842e-05,
|
898 |
+
"loss": 0.4608,
|
899 |
"step": 1260
|
900 |
},
|
901 |
{
|
902 |
"epoch": 1.9629057187017,
|
903 |
+
"grad_norm": 0.002320705447345972,
|
904 |
+
"learning_rate": 5.921052631578947e-05,
|
905 |
+
"loss": 0.4608,
|
906 |
"step": 1270
|
907 |
},
|
908 |
{
|
909 |
"epoch": 1.9783616692426584,
|
910 |
+
"grad_norm": 0.0025752289220690727,
|
911 |
+
"learning_rate": 3.4539473684210524e-05,
|
912 |
+
"loss": 0.4466,
|
913 |
"step": 1280
|
914 |
},
|
915 |
{
|
916 |
"epoch": 1.9938176197836168,
|
917 |
+
"grad_norm": 0.0026244991458952427,
|
918 |
+
"learning_rate": 9.868421052631579e-06,
|
919 |
+
"loss": 0.4555,
|
920 |
"step": 1290
|
921 |
}
|
922 |
],
|
|
|
937 |
"attributes": {}
|
938 |
}
|
939 |
},
|
940 |
+
"total_flos": 1.3257051724162499e+18,
|
941 |
+
"train_batch_size": 4,
|
942 |
"trial_name": null,
|
943 |
"trial_params": null
|
944 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5432
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:751a143eac84ace0878962d5a6c61e00ae90313081b3e87461034dcd220797a8
|
3 |
size 5432
|