File size: 9,153 Bytes
9cfbab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25d9ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
9cfbab9
 
25d9ae3
 
 
9cfbab9
 
25d9ae3
9cfbab9
 
 
 
 
 
25d9ae3
9cfbab9
25d9ae3
9cfbab9
25d9ae3
9cfbab9
25d9ae3
9cfbab9
25d9ae3
9cfbab9
25d9ae3
9cfbab9
 
 
25d9ae3
 
9cfbab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25d9ae3
9cfbab9
 
25d9ae3
9cfbab9
 
25d9ae3
9cfbab9
25d9ae3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from typing import Tuple, TypedDict, Optional
import datetime
from datetime import datetime, timedelta
import pandas as pd
from next_place_ai.classes import DataPreparation, DatasetManager, AzureScore
from dotenv import load_dotenv
import os

load_dotenv()


class ProcessedSynapse(TypedDict):
    id: Optional[str]
    nextplace_id: Optional[str]
    property_id: Optional[str]
    listing_id: Optional[str]
    address: Optional[str]
    city: Optional[str]
    state: Optional[str]
    zip_code: Optional[str]
    price: Optional[float]
    beds: Optional[int]
    baths: Optional[float]
    sqft: Optional[int]
    lot_size: Optional[int]
    year_built: Optional[int]
    days_on_market: Optional[int]
    latitude: Optional[float]
    longitude: Optional[float]
    property_type: Optional[str]
    last_sale_date: Optional[str]
    hoa_dues: Optional[float]
    query_date: Optional[str]


class CustomNextPlaceModel:

    def __init__(self):
        self.repo_id = os.getenv('REPO_ID')
        self.hf_token = os.getenv('HF_TOKEN')
        self._load_model()

    def _load_model(self):
        """
        Load all required models for the prediction pipeline
        """
        try:
            # Model A scoring
            self.score_a = AzureScore(
                repo_id=self.repo_id,
                token=self.hf_token,
                model_filename='A',
                scored_labels='A'
            )

            # Model B scorings
            self.score_b_1 = AzureScore(
                repo_id=self.repo_id,
                token=self.hf_token,
                model_filename='B_1',
                scored_labels='B'
            )
            self.score_b_2 = AzureScore(
                repo_id=self.repo_id,
                token=self.hf_token,
                model_filename='B_2',
                scored_labels='B'
            )
            self.score_b_3 = AzureScore(
                repo_id=self.repo_id,
                token=self.hf_token,
                model_filename='B_3',
                scored_labels='B'
            )

            # Model C scorings
            self.score_c_models = {
                '1': AzureScore(repo_id=self.repo_id, token=self.hf_token, model_filename='model_[1]', scored_labels='price'),
                '2': AzureScore(repo_id=self.repo_id, token=self.hf_token, model_filename='model_[2]', scored_labels='price'),
                '3_4': AzureScore(repo_id=self.repo_id, token=self.hf_token, model_filename='model_[3, 4]', scored_labels='price'),
                '5_6': AzureScore(repo_id=self.repo_id, token=self.hf_token, model_filename='model_[5, 6]', scored_labels='price'),
                '7': AzureScore(repo_id=self.repo_id, token=self.hf_token, model_filename='model_[7]', scored_labels='price'),
                '8_9': AzureScore(repo_id=self.repo_id, token=self.hf_token, model_filename='model_C_8_9', scored_labels='price')
            }

            # Time model
            self.score_t_1 = AzureScore(
                repo_id=self.repo_id,
                token=self.hf_token,
                model_filename='model_T_1',
                scored_labels='days'
            )

            # Data preparation module
            self.data_manager = DatasetManager(repo_id=self.repo_id, token=self.hf_token)

        except Exception as e:
            raise ValueError(f"Error loading models: {str(e)}")

    def predict(self, validators_data: pd.DataFrame) -> pd.DataFrame:
        """
        Main prediction pipeline for processing input data

        Args:
            validators_data (pd.DataFrame): Input validation dataset

        Returns:
            pd.DataFrame: Processed prediction results
        """
        # Ensure input is a DataFrame and has at least one row
        if not isinstance(validators_data, pd.DataFrame) or validators_data.empty:
            raise ValueError("Input must be a non-empty pandas DataFrame")

        # Prepare data preparation instance
        dp = DataPreparation(validators_data)

        # Prepare initial dataset
        dp.prepare_data()

        # Predict A scores
        score_A = self.score_a.predict_proba_dataset(dp.X)

        # Combine datasets
        combined_dataset = dp.combine_datasets(score_A, dp.X)
        combined_dataset = combined_dataset.drop(columns=['0'])
        combined_dataset, _ = dp.create_convolution_features(combined_dataset, combined_dataset.columns.to_list(), 3)

        # Predict B scores for different categories
        # score_B_1 = self.score_b_1.predict_proba_dataset(combined_dataset[combined_dataset['A']==1])
        # score_B_2 = self.score_b_2.predict_proba_dataset(combined_dataset[combined_dataset['A']==2])
        # score_B_3 = self.score_b_3.predict_proba_dataset(combined_dataset[combined_dataset['A']==3])
        b_scores = {
            '1': self.score_b_1.predict_proba_dataset(combined_dataset[combined_dataset['A'] == 1])
            if not combined_dataset[combined_dataset['A'] == 1].empty else pd.DataFrame(
                {'B_Probability_Class_0': [0], 'B_Probability_Class_1': [0], 'B_Probability_Class_2': [0]}),
            '2': self.score_b_2.predict_proba_dataset(combined_dataset[combined_dataset['A'] == 2])
            if not combined_dataset[combined_dataset['A'] == 2].empty else pd.DataFrame(
                {'B_Probability_Class_0': [0], 'B_Probability_Class_1': [0], 'B_Probability_Class_2': [0]}),
            '3': self.score_b_3.predict_proba_dataset(combined_dataset[combined_dataset['A'] == 3])
            if not combined_dataset[combined_dataset['A'] == 3].empty else pd.DataFrame(
                {'B_Probability_Class_0': [0], 'B_Probability_Class_1': [0], 'B_Probability_Class_2': [0]}),
        }

        # Concatenate B scores
        df_B = pd.concat([b_scores['1'], b_scores['2'], b_scores['3']], ignore_index=True)

        df_B_ = df_B.dropna()

        # Further combine and process dataset
        combined_dataset = dp.combine_datasets(df_B_, dp.X)
        combined_dataset = combined_dataset.drop(columns=['0'])
        combined_dataset, _ = dp.create_convolution_features(combined_dataset, combined_dataset.columns.to_list(), 3)

        # Predict C scores for different categories
        c_scores = {
            '1': self.score_c_models['1'].predict_dataset(combined_dataset[combined_dataset['B'].isin([1])])
            if not combined_dataset[combined_dataset['B'].isin([1])].empty else pd.DataFrame({'price': [0]}),
            '2': self.score_c_models['2'].predict_dataset(combined_dataset[combined_dataset['B'].isin([2])])
            if not combined_dataset[combined_dataset['B'].isin([2])].empty else pd.DataFrame({'price': [0]}),
            '3_4': self.score_c_models['3_4'].predict_dataset(combined_dataset[combined_dataset['B'].isin([3, 4])])
            if not combined_dataset[combined_dataset['B'].isin([3, 4])].empty else pd.DataFrame({'price': [0]}),
            '5_6': self.score_c_models['5_6'].predict_dataset(combined_dataset[combined_dataset['B'].isin([5, 6])])
            if not combined_dataset[combined_dataset['B'].isin([5, 6])].empty else pd.DataFrame({'price': [0]}),
            '7': self.score_c_models['7'].predict_dataset(combined_dataset[combined_dataset['B'].isin([7])])
            if not combined_dataset[combined_dataset['B'].isin([7])].empty else pd.DataFrame({'price': [0]}),
            '8_9': self.score_c_models['8_9'].predict_dataset(combined_dataset[combined_dataset['B'].isin([8, 9])])
            if not combined_dataset[combined_dataset['B'].isin([8, 9])].empty else pd.DataFrame({'price': [0]})
        }
        df_C = pd.concat(
            [c_scores[key][['price']] for key in c_scores
             if
             isinstance(c_scores[key], pd.DataFrame) and 'price' in c_scores[key].columns and not c_scores[key].empty],
            ignore_index=True
        )

        df_C_ = df_C[df_C['price'] != 0].copy()

        # Combine datasets
        t_df_ = pd.concat([combined_dataset.reset_index(drop=True), df_C_.reset_index(drop=True)], axis=1)

        # Predict time
        score_t_1 = self.score_t_1.predict_dataset(t_df_).astype(int)

        # Final result
        result = pd.concat([df_C_.reset_index(drop=True), score_t_1.reset_index(drop=True)], axis=1)

        return result

    def run_inference(self, input_data: ProcessedSynapse) -> Tuple[float, str]:

        input_data = pd.DataFrame([input_data])
        result = self.predict(input_data)
        predicted_sale_price, predicted_days = result['price'].iloc[0], result['days'].iloc[0] # кол-во дней нужно преобразовать в дату в виде строки

        current_days_on_market = input_data['days_on_market'].iloc[0] if 'days_on_market' in input_data else 0

        # Вычисление даты размещения на рынке
        date_listed = datetime.now() - timedelta(days=int(current_days_on_market))

        # Вычисление предсказанной даты продажи
        predicted_sale_date = (date_listed + timedelta(days=int(predicted_days))).strftime('%Y-%m-%d')

        return float(predicted_sale_price), predicted_sale_date