all-MiniLM-L6-v2-klej-dyk-v0.1
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Sen o zastrzyku Irmy',
'gdzie Freud spotkał Irmę we śnie o zastrzyku Irmy?',
'ile razy Srebrna Biblia była przywożona do Szwecji?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_384
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1995 |
cosine_accuracy@3 | 0.4303 |
cosine_accuracy@5 | 0.5385 |
cosine_accuracy@10 | 0.6226 |
cosine_precision@1 | 0.1995 |
cosine_precision@3 | 0.1434 |
cosine_precision@5 | 0.1077 |
cosine_precision@10 | 0.0623 |
cosine_recall@1 | 0.1995 |
cosine_recall@3 | 0.4303 |
cosine_recall@5 | 0.5385 |
cosine_recall@10 | 0.6226 |
cosine_ndcg@10 | 0.4068 |
cosine_mrr@10 | 0.3377 |
cosine_map@100 | 0.3452 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1851 |
cosine_accuracy@3 | 0.4135 |
cosine_accuracy@5 | 0.5096 |
cosine_accuracy@10 | 0.6034 |
cosine_precision@1 | 0.1851 |
cosine_precision@3 | 0.1378 |
cosine_precision@5 | 0.1019 |
cosine_precision@10 | 0.0603 |
cosine_recall@1 | 0.1851 |
cosine_recall@3 | 0.4135 |
cosine_recall@5 | 0.5096 |
cosine_recall@10 | 0.6034 |
cosine_ndcg@10 | 0.3911 |
cosine_mrr@10 | 0.3234 |
cosine_map@100 | 0.3304 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1803 |
cosine_accuracy@3 | 0.3534 |
cosine_accuracy@5 | 0.4423 |
cosine_accuracy@10 | 0.5192 |
cosine_precision@1 | 0.1803 |
cosine_precision@3 | 0.1178 |
cosine_precision@5 | 0.0885 |
cosine_precision@10 | 0.0519 |
cosine_recall@1 | 0.1803 |
cosine_recall@3 | 0.3534 |
cosine_recall@5 | 0.4423 |
cosine_recall@10 | 0.5192 |
cosine_ndcg@10 | 0.3443 |
cosine_mrr@10 | 0.2889 |
cosine_map@100 | 0.296 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.137 |
cosine_accuracy@3 | 0.2644 |
cosine_accuracy@5 | 0.3221 |
cosine_accuracy@10 | 0.3798 |
cosine_precision@1 | 0.137 |
cosine_precision@3 | 0.0881 |
cosine_precision@5 | 0.0644 |
cosine_precision@10 | 0.038 |
cosine_recall@1 | 0.137 |
cosine_recall@3 | 0.2644 |
cosine_recall@5 | 0.3221 |
cosine_recall@10 | 0.3798 |
cosine_ndcg@10 | 0.2529 |
cosine_mrr@10 | 0.2129 |
cosine_map@100 | 0.2209 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,738 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 7 tokens
- mean: 87.54 tokens
- max: 256 tokens
- min: 9 tokens
- mean: 30.98 tokens
- max: 76 tokens
- Samples:
positive anchor Zespół Blaua (zespół Jabsa, ang. Blau syndrome, BS) – rzadka choroba genetyczna o dziedziczeniu autosomalnym dominującym, charakteryzująca się ziarniniakowym zapaleniem stawów o wczesnym początku, zapaleniem jagodówki (uveitis) i wysypką skórną, a także kamptodaktylią.
jakie choroby genetyczne dziedziczą się autosomalnie dominująco?
Gorgippia Gorgippia – starożytne miasto bosporańskie nad Morzem Czarnym, którego pozostałości znajdują się obecnie pod współczesną zabudową centralnej części miasta Anapa w Kraju Krasnodarskim w Rosji.
gdzie obecnie znajduje się starożytne miasto Gorgippia?
Ulubionym dystansem Rücker było 400 metrów i to na nim notowała największe indywidualne sukcesy : srebrny medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) 6. miejsce w Pucharze Świata w Lekkoatletyce (Hawana 1992) 5. miejsce na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) srebro podczas Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) złota medalistka mistrzostw Niemiec Duże sukcesy odnosiła także w sztafecie 4 x 400 metrów : złoto Mistrzostw Europy juniorów w lekkoatletyce (Varaždin 1989) złoty medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) brąz na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) brązowy medal podczas Igrzysk Olimpijskich (Atlanta 1996) brąz na Halowych Mistrzostwach Świata w Lekkoatletyce (Paryż 1997) złoto Mistrzostw Świata w Lekkoatletyce (Ateny 1997) brązowy medal Mistrzostw Świata w Lekkoatletyce (Sewilla 1999)
kto zaprojektował medale, które będą wręczane podczas tegorocznych mistrzostw Europy juniorów w lekkoatletyce?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 32learning_rate
: 2e-05num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 32eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
---|---|---|---|---|---|---|
0 | 0 | - | 0.1945 | 0.2243 | 0.2302 | 0.1499 |
0.2735 | 1 | 8.2585 | - | - | - | - |
0.5470 | 2 | 8.4215 | - | - | - | - |
0.8205 | 3 | 7.899 | 0.2205 | 0.2510 | 0.2597 | 0.1677 |
1.0855 | 4 | 6.5734 | - | - | - | - |
1.3590 | 5 | 6.2406 | - | - | - | - |
1.6325 | 6 | 6.0949 | - | - | - | - |
1.9060 | 7 | 5.7149 | 0.2736 | 0.3061 | 0.3224 | 0.2124 |
2.1709 | 8 | 5.153 | - | - | - | - |
2.4444 | 9 | 5.3615 | - | - | - | - |
2.7179 | 10 | 5.3069 | - | - | - | - |
2.9915 | 11 | 5.1567 | 0.2914 | 0.3238 | 0.3402 | 0.2191 |
3.2564 | 12 | 4.6824 | - | - | - | - |
3.5299 | 13 | 5.1072 | - | - | - | - |
3.8034 | 14 | 5.1575 | 0.2967 | 0.3302 | 0.3443 | 0.2196 |
4.0684 | 15 | 4.5651 | 0.2960 | 0.3304 | 0.3452 | 0.2209 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ve88ifz2/all-MiniLM-L6-v2-klej-dyk-v0.1
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy@1 on dim 384self-reported0.200
- Cosine Accuracy@3 on dim 384self-reported0.430
- Cosine Accuracy@5 on dim 384self-reported0.538
- Cosine Accuracy@10 on dim 384self-reported0.623
- Cosine Precision@1 on dim 384self-reported0.200
- Cosine Precision@3 on dim 384self-reported0.143
- Cosine Precision@5 on dim 384self-reported0.108
- Cosine Precision@10 on dim 384self-reported0.062
- Cosine Recall@1 on dim 384self-reported0.200
- Cosine Recall@3 on dim 384self-reported0.430