ve88ifz2's picture
Add new SentenceTransformer model.
d5a352c verified
metadata
base_model: Snowflake/snowflake-arctic-embed-m
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:1K<n<10K
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: kim był Steve Yzerman?
    sentences:
      - Łazik marsjański Opportunity
      - w jakim kraju jest przyznawany Order Białego Lotosu?
      - do powstania jakich instytucji przyczynił się pierwszy biskup Makau?
  - source_sentence: gdzie rośnie bokkonia?
    sentences:
      - jak rozmnażają się Aeolosomatidae?
      - kto 1 stycznia 2011 został gubernatorem Nowego Jorku?
      - w której świątyni koronowany był król jerozolimski Baldwin I?
  - source_sentence: Godło Republiki Ałtaju
    sentences:
      - co przedstawia godło Republiki Ałtaju?
      - w którym kraju w noc sylwestrową je się oliebollen?
      - który z członków załogi Międzynarodowej Stacji Kosmicznej nie ma nóg?
  - source_sentence: co to jest meszne?
    sentences:
      - co to jest Mammoth Hot Springs?
      - jak przebiegała kariera sportowa Witolda Sikorskiego?
      - do uratowania ilu dzieł sztuki przyczynił się Borys Woźnicki?
  - source_sentence: Chłopiec z Nariokotome
    sentences:
      - ile wynosiła objętość mózgu chłopca z Nariokotome?
      - gdzie znajduje się czwarty polski cmentarz katyński?
      - w jakich miejscach stał warszawski pomnik Ignacego Jana Paderewskiego?
model-index:
  - name: snowflake-arctic-embed-m-klej-dyk
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.18509615384615385
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.4807692307692308
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.625
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7259615384615384
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.18509615384615385
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.16025641025641024
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.125
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07259615384615384
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.18509615384615385
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.4807692307692308
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.625
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7259615384615384
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.44786216254546357
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.358972451159951
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3672210078826913
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.17548076923076922
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.47115384615384615
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6129807692307693
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7019230769230769
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.17548076923076922
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.15705128205128205
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.12259615384615384
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07019230769230768
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.17548076923076922
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.47115384615384615
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6129807692307693
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7019230769230769
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.43344535381311455
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3473920177045177
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3563798565478224
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.15625
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.4543269230769231
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5649038461538461
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6730769230769231
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.15625
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.15144230769230768
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.11298076923076923
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0673076923076923
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.15625
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.4543269230769231
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5649038461538461
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6730769230769231
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4102597093872519
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.32613324175824177
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3350744652348361
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.16346153846153846
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.3918269230769231
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5072115384615384
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6057692307692307
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.16346153846153846
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.13060897435897434
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.10144230769230769
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06057692307692307
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.16346153846153846
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3918269230769231
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5072115384615384
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6057692307692307
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3757626519143444
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.30273962148962136
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3116992239855167
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.14903846153846154
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.3389423076923077
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.4182692307692308
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.49278846153846156
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.14903846153846154
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.11298076923076923
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.08365384615384615
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04927884615384615
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.14903846153846154
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3389423076923077
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.4182692307692308
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.49278846153846156
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.31783226267644227
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.26212320665445676
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.27044860532149884
            name: Cosine Map@100

snowflake-arctic-embed-m-klej-dyk

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Chłopiec z Nariokotome',
    'ile wynosiła objętość mózgu chłopca z Nariokotome?',
    'gdzie znajduje się czwarty polski cmentarz katyński?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.1851
cosine_accuracy@3 0.4808
cosine_accuracy@5 0.625
cosine_accuracy@10 0.726
cosine_precision@1 0.1851
cosine_precision@3 0.1603
cosine_precision@5 0.125
cosine_precision@10 0.0726
cosine_recall@1 0.1851
cosine_recall@3 0.4808
cosine_recall@5 0.625
cosine_recall@10 0.726
cosine_ndcg@10 0.4479
cosine_mrr@10 0.359
cosine_map@100 0.3672

Information Retrieval

Metric Value
cosine_accuracy@1 0.1755
cosine_accuracy@3 0.4712
cosine_accuracy@5 0.613
cosine_accuracy@10 0.7019
cosine_precision@1 0.1755
cosine_precision@3 0.1571
cosine_precision@5 0.1226
cosine_precision@10 0.0702
cosine_recall@1 0.1755
cosine_recall@3 0.4712
cosine_recall@5 0.613
cosine_recall@10 0.7019
cosine_ndcg@10 0.4334
cosine_mrr@10 0.3474
cosine_map@100 0.3564

Information Retrieval

Metric Value
cosine_accuracy@1 0.1562
cosine_accuracy@3 0.4543
cosine_accuracy@5 0.5649
cosine_accuracy@10 0.6731
cosine_precision@1 0.1562
cosine_precision@3 0.1514
cosine_precision@5 0.113
cosine_precision@10 0.0673
cosine_recall@1 0.1562
cosine_recall@3 0.4543
cosine_recall@5 0.5649
cosine_recall@10 0.6731
cosine_ndcg@10 0.4103
cosine_mrr@10 0.3261
cosine_map@100 0.3351

Information Retrieval

Metric Value
cosine_accuracy@1 0.1635
cosine_accuracy@3 0.3918
cosine_accuracy@5 0.5072
cosine_accuracy@10 0.6058
cosine_precision@1 0.1635
cosine_precision@3 0.1306
cosine_precision@5 0.1014
cosine_precision@10 0.0606
cosine_recall@1 0.1635
cosine_recall@3 0.3918
cosine_recall@5 0.5072
cosine_recall@10 0.6058
cosine_ndcg@10 0.3758
cosine_mrr@10 0.3027
cosine_map@100 0.3117

Information Retrieval

Metric Value
cosine_accuracy@1 0.149
cosine_accuracy@3 0.3389
cosine_accuracy@5 0.4183
cosine_accuracy@10 0.4928
cosine_precision@1 0.149
cosine_precision@3 0.113
cosine_precision@5 0.0837
cosine_precision@10 0.0493
cosine_recall@1 0.149
cosine_recall@3 0.3389
cosine_recall@5 0.4183
cosine_recall@10 0.4928
cosine_ndcg@10 0.3178
cosine_mrr@10 0.2621
cosine_map@100 0.2704

Training Details

Training Dataset

Unnamed Dataset

  • Size: 3,738 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 94.61 tokens
    • max: 512 tokens
    • min: 10 tokens
    • mean: 30.71 tokens
    • max: 76 tokens
  • Samples:
    positive anchor
    Marsz Ochotników (chin. kto jest kompozytorem chińskiego hymnu narodowego Marsz Ochotników?
    Wybrane przykłady: Święta Rodzina – Maryja z Dzieciątkiem na ręku, niekiedy obok niej stoi św. Józef Rodzina Marii – przedstawienie w którym pojawia się Święta Rodzina oraz postaci spokrewnione z Marią. Maria w połogu (Maria in puerperio) – leżąca na łożu Maria opiekuje się Dzieciątkiem Maria karmiąca (Maria lactans) – Maria karmiąca swą piersią Dzieciątko Orantka – kobieta modląca się z podniesionymi rękami (częsty motyw ikon wschodnich); Sacra Conversazione – Matka Boska tronująca z Dzieciątkiem, otoczona stojącymi postaciami świętych Pietà – opłakująca Jezusa, trzymając na kolanach jego ciało po śmierci na krzyżu; Hodegetria – ujęcie popiersia Maryi, trzymającej na rękach małego Jezusa, częsty motyw w ikonach Eleusa – formalnie podobne do przedstawienia Hodegetrii lecz Maryja policzkiem przytula się do policzka Jezusa Immaculata – Niepokalane Poczęcie Najświętszej Maryi Panny. kto zamiast Maryi trzyma nowonarodzonego Jezusa w scenie Bożego Narodzenia przedstawionej na poliptyku z Marią i Dzieciątkiem Jezus?
    Pomnik Josepha von Eichendorffa w Brzeziu Pomnik Josepha von Eichendorffa – odtworzony w 2006 roku pomnik znanego niemieckiego poety epoki romantyzmu związanego z ziemią raciborską, Josepha von Eichendorffa. po ilu latach odtworzono wysadzony w 1945 roku pomnik Josepha von Eichendorffa w Raciborzu-Brzeziu?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.0684 1 9.3155 - - - - -
0.1368 2 9.1788 - - - - -
0.2051 3 8.8387 - - - - -
0.2735 4 8.2961 - - - - -
0.3419 5 8.0242 - - - - -
0.4103 6 7.2329 - - - - -
0.4786 7 5.4386 - - - - -
0.5470 8 6.1186 - - - - -
0.6154 9 4.9714 - - - - -
0.6838 10 5.1958 - - - - -
0.7521 11 5.1135 - - - - -
0.8205 12 4.6971 - - - - -
0.8889 13 4.5559 - - - - -
0.9573 14 3.9357 0.2842 0.3098 0.3191 0.2238 0.3209
1.0256 15 3.7916 - - - - -
1.0940 16 3.6393 - - - - -
1.1624 17 3.7733 - - - - -
1.2308 18 3.6974 - - - - -
1.2991 19 3.5964 - - - - -
1.3675 20 3.4118 - - - - -
1.4359 21 3.2022 - - - - -
1.5043 22 2.8133 - - - - -
1.5726 23 3.0871 - - - - -
1.6410 24 2.9559 - - - - -
1.7094 25 2.8192 - - - - -
1.7778 26 3.462 - - - - -
1.8462 27 3.1435 - - - - -
1.9145 28 2.8001 - - - - -
1.9829 29 2.5643 0.3134 0.3359 0.3563 0.2588 0.3671
2.0513 30 2.4295 - - - - -
2.1197 31 2.3892 - - - - -
2.1880 32 2.5228 - - - - -
2.2564 33 2.4906 - - - - -
2.3248 34 2.5358 - - - - -
2.3932 35 2.2806 - - - - -
2.4615 36 2.0083 - - - - -
2.5299 37 2.5088 - - - - -
2.5983 38 2.0628 - - - - -
2.6667 39 2.193 - - - - -
2.7350 40 2.4783 - - - - -
2.8034 41 2.382 - - - - -
2.8718 42 2.2017 - - - - -
2.9402 43 1.9739 0.3111 0.3392 0.3572 0.2657 0.3659
3.0085 44 2.0332 - - - - -
3.0769 45 1.9983 - - - - -
3.1453 46 1.8612 - - - - -
3.2137 47 1.9897 - - - - -
3.2821 48 2.2514 - - - - -
3.3504 49 2.0092 - - - - -
3.4188 50 1.7399 - - - - -
3.4872 51 1.5825 - - - - -
3.5556 52 2.1501 - - - - -
3.6239 53 1.4505 - - - - -
3.6923 54 1.8575 - - - - -
3.7607 55 2.3882 - - - - -
3.8291 56 2.1119 - - - - -
3.8974 57 1.8992 - - - - -
3.9658 58 1.8323 0.3117 0.3365 0.3558 0.2683 0.3670
4.0342 59 1.5938 - - - - -
4.1026 60 1.552 - - - - -
4.1709 61 1.907 - - - - -
4.2393 62 1.8304 - - - - -
4.3077 63 1.8775 - - - - -
4.3761 64 1.8654 - - - - -
4.4444 65 1.7944 - - - - -
4.5128 66 1.8335 - - - - -
4.5812 67 1.8823 - - - - -
4.6496 68 1.6479 - - - - -
4.7179 69 1.5771 - - - - -
4.7863 70 2.1911 0.3117 0.3351 0.3564 0.2704 0.3672
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.2
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.2
  • PyTorch: 2.3.1
  • Accelerate: 0.27.2
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}