velocity-ai's picture
End of training
6332be7 verified
|
raw
history blame
3.15 kB
metadata
language:
  - hi
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - velocity-whisper-tiny
metrics:
  - wer
model-index:
  - name: whisper-tiny-finetuned-hinglish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: whisper-training
          type: velocity-whisper-tiny
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 42.262816735415434

whisper-tiny-finetuned-hinglish

This model is a fine-tuned version of openai/whisper-medium on the whisper-training dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7758
  • Wer: 42.2628

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3632 1.7825 1000 0.3962 51.0784
0.2411 3.5651 2000 0.3428 45.1149
0.1242 5.3476 3000 0.3459 42.1685
0.0813 7.1301 4000 0.3610 42.1685
0.0654 8.9127 5000 0.3949 41.9210
0.0309 10.6952 6000 0.4422 42.7814
0.0161 12.4777 7000 0.4836 42.3925
0.0067 14.2602 8000 0.5291 42.9346
0.0032 16.0428 9000 0.5645 42.4514
0.0031 17.8253 10000 0.5951 42.7814
0.002 19.6078 11000 0.6248 42.5103
0.0007 21.3904 12000 0.6486 42.8167
0.0004 23.1729 13000 0.6760 42.0625
0.0008 24.9554 14000 0.6982 42.4396
0.0018 26.7380 15000 0.7149 42.4985
0.0002 28.5205 16000 0.7172 41.8739
0.0001 30.3030 17000 0.7307 42.4042
0.0001 32.0856 18000 0.7399 42.0742
0.0001 33.8681 19000 0.7497 42.1332
0.0001 35.6506 20000 0.7608 42.0860
0.0 37.4332 21000 0.7695 41.9682
0.0 39.2157 22000 0.7758 42.2628

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1