Edit model card

convnext-tiny-224_album_vitVMMRdb_make_model_album_pred

This model is a fine-tuned version of facebook/convnext-tiny-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7021
  • Accuracy: 0.8173
  • Precision: 0.8094
  • Recall: 0.8173
  • F1: 0.8057

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
4.6105 1.0 839 4.5248 0.1097 0.0579 0.1097 0.0403
3.4711 2.0 1678 3.3162 0.3000 0.2302 0.3000 0.2097
2.6202 3.0 2517 2.4445 0.4709 0.4120 0.4709 0.3939
2.0614 4.0 3356 1.8839 0.5742 0.5389 0.5742 0.5168
1.7026 5.0 4195 1.5247 0.6436 0.6180 0.6436 0.6013
1.4288 6.0 5034 1.2768 0.6979 0.6810 0.6979 0.6686
1.1953 7.0 5873 1.0960 0.7323 0.7218 0.7323 0.7077
1.058 8.0 6712 0.9828 0.7548 0.7441 0.7548 0.7350
0.9691 9.0 7551 0.9018 0.7718 0.7616 0.7718 0.7536
0.8757 10.0 8390 0.8380 0.7893 0.7806 0.7893 0.7756
0.8446 11.0 9229 0.7905 0.7982 0.7913 0.7982 0.7859
0.7711 12.0 10068 0.7524 0.8069 0.7995 0.8069 0.7950
0.7689 13.0 10907 0.7283 0.8123 0.8043 0.8123 0.8009
0.6919 14.0 11746 0.7133 0.8148 0.8061 0.8148 0.8036
0.694 15.0 12585 0.7064 0.8177 0.8089 0.8177 0.8067

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.