File size: 1,814 Bytes
a9a5083 0ff83bd a9a5083 1f8f929 a9a5083 1f8f929 a9a5083 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased_finetuned_text_2_disease
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased_finetuned_text_2_disease
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0156
- Accuracy: 1.0
- F1: 1.0
- Recall: 1.0
- Precision: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.0585 | 1.0 | 167 | 0.0354 | 0.9985 | 0.9985 | 0.9985 | 0.9986 |
| 0.0457 | 2.0 | 334 | 0.0156 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0207 | 3.0 | 501 | 0.0125 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|