File size: 1,814 Bytes
a9a5083
 
 
 
 
 
 
 
 
0ff83bd
a9a5083
 
 
 
 
 
 
 
 
 
 
 
1f8f929
 
 
 
 
a9a5083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8f929
 
 
a9a5083
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased_finetuned_text_2_disease
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased_finetuned_text_2_disease

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0156
- Accuracy: 1.0
- F1: 1.0
- Recall: 1.0
- Precision: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.0585        | 1.0   | 167  | 0.0354          | 0.9985   | 0.9985 | 0.9985 | 0.9986    |
| 0.0457        | 2.0   | 334  | 0.0156          | 1.0      | 1.0    | 1.0    | 1.0       |
| 0.0207        | 3.0   | 501  | 0.0125          | 1.0      | 1.0    | 1.0    | 1.0       |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2