YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Note that this model does not work directly with HF, a modification that does mean pooling before the layernorm and classification head is needed.

from transformers import (
    ViTForImageClassification,
    pipeline,
    AutoImageProcessor,
    ViTConfig,
    ViTModel,
)

from transformers.modeling_outputs import (
    ImageClassifierOutput,
    BaseModelOutputWithPooling,
)

from PIL import Image
import torch
from torch import nn
from typing import Optional, Union, Tuple


class CustomViTModel(ViTModel):
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        bool_masked_pos: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
        expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
        if pixel_values.dtype != expected_dtype:
            pixel_values = pixel_values.to(expected_dtype)

        embedding_output = self.embeddings(
            pixel_values,
            bool_masked_pos=bool_masked_pos,
            interpolate_pos_encoding=interpolate_pos_encoding,
        )

        encoder_outputs = self.encoder(
            embedding_output,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        sequence_output = sequence_output[:, 1:, :].mean(dim=1)

        sequence_output = self.layernorm(sequence_output)
        pooled_output = (
            self.pooler(sequence_output) if self.pooler is not None else None
        )

        if not return_dict:
            head_outputs = (
                (sequence_output, pooled_output)
                if pooled_output is not None
                else (sequence_output,)
            )
            return head_outputs + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


class CustomViTForImageClassification(ViTForImageClassification):
    def __init__(self, config: ViTConfig) -> None:
        super().__init__(config)

        self.num_labels = config.num_labels
        self.vit = CustomViTModel(config, add_pooling_layer=False)

        # Classifier head
        self.classifier = (
            nn.Linear(config.hidden_size, config.num_labels)
            if config.num_labels > 0
            else nn.Identity()
        )

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, ImageClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.vit(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            interpolate_pos_encoding=interpolate_pos_encoding,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.classifier(sequence_output)

        loss = None

        return ImageClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

if __name__ == "__main__":
  
  model = CustomViTForImageClassification.from_pretrained("vesteinn/vit-mae-inat21")
  image_processor = AutoImageProcessor.from_pretrained("vesteinn/vit-mae-inat21")
  
  classifier = pipeline(
      "image-classification", model=model, image_processor=image_processor
  )
Downloads last month
193
Safetensors
Model size
314M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.