Token Classification
GLiNER
PyTorch
ner
pii
gliner-small-pii / README.md
vicgalle's picture
Update README.md
6d99505 verified
metadata
license: apache-2.0
datasets:
  - urchade/synthetic-pii-ner-mistral-v1
language:
  - en
  - fr
  - de
  - es
  - pt
  - it
tags:
  - gliner
  - ner
  - pii
pipeline_tag: token-classification

GLiNER-small-PII

This model has been trained by fine-tuning gliner-community/gliner_small-v2.5 on the urchade/synthetic-pii-ner-mistral-v1 dataset.

This model is capable of recognizing various types of personally identifiable information (PII), including but not limited to these entity types: person, organization, phone number, address, passport number, email, credit card number, social security number, health insurance id number, date of birth, mobile phone number, bank account number, medication, cpf, driver's license number, tax identification number, medical condition, identity card number, national id number, ip address, email address, iban, credit card expiration date, username, health insurance number, registration number, student id number, insurance number, flight number, landline phone number, blood type, cvv, reservation number, digital signature, social media handle, license plate number, cnpj, postal code, passport_number, serial number, vehicle registration number, credit card brand, fax number, visa number, insurance company, identity document number, transaction number, national health insurance number, cvc, birth certificate number, train ticket number, passport expiration date, and social_security_number.

Usage

model = GLiNER.from_pretrained("vicgalle/gliner-small-pii", load_tokenizer=True)

text = """
Harilala Rasoanaivo, un homme d'affaires local d'Antananarivo, a enregistré une nouvelle société nommée "Rasoanaivo Enterprises" au Lot II M 92 Antohomadinika. Son numéro est le +261 32 22 345 67, et son adresse électronique est harilala.rasoanaivo@telma.mg. Il a fourni son numéro de sécu 501-02-1234 pour l'enregistrement.
"""

labels = [
    "work",
    "booking number",
    "personally identifiable information",
    "driver licence",
    "person",
    "book",
    "postal address",
    "company",
    "actor",
    "character",
    "email",
    "passport number",
    "SSN",
    "phone number",
]
entities = model.predict_entities(text, labels, threshold=0.1)

for entity in entities:
    print(entity["text"], "=>", entity["label"])
Harilala Rasoanaivo => person
Rasoanaivo Enterprises => company
Lot II M 92 Antohomadinika => postal address
+261 32 22 345 67 => phone number
harilala.rasoanaivo@telma.mg => email
501-02-1234 => SSN

Note: it may be beneficial to lower the threshold (see the previous example), to extract all related entities.