Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1000
  • Accuracy: {'accuracy': 0.871}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3592 {'accuracy': 0.877}
0.4557 2.0 500 0.7061 {'accuracy': 0.812}
0.4557 3.0 750 0.6457 {'accuracy': 0.875}
0.2774 4.0 1000 0.8260 {'accuracy': 0.858}
0.2774 5.0 1250 1.0227 {'accuracy': 0.867}
0.18 6.0 1500 0.8672 {'accuracy': 0.878}
0.18 7.0 1750 1.0398 {'accuracy': 0.873}
0.0522 8.0 2000 1.0858 {'accuracy': 0.869}
0.0522 9.0 2250 1.0951 {'accuracy': 0.867}
0.0166 10.0 2500 1.1000 {'accuracy': 0.871}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for vincent007/distilbert-base-uncased-lora-text-classification

Adapter
(198)
this model