orpo-phi3 / README.md
vishal1829's picture
Model save
0976ed7 verified
|
raw
history blame
3 kB
metadata
license: mit
library_name: peft
tags:
  - trl
  - orpo
  - generated_from_trainer
base_model: microsoft/Phi-3-mini-4k-instruct
model-index:
  - name: orpo-phi3
    results: []

orpo-phi3

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2224
  • Rewards/chosen: -0.1152
  • Rewards/rejected: -0.1838
  • Rewards/accuracies: 1.0
  • Rewards/margins: 0.0685
  • Logps/rejected: -1.8375
  • Logps/chosen: -1.1521
  • Logits/rejected: -1.5266
  • Logits/chosen: -0.4575
  • Nll Loss: 1.1880
  • Log Odds Ratio: -0.3436
  • Log Odds Chosen: 0.8917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
4.0204 0.24 3 1.2224 -0.1152 -0.1838 1.0 0.0685 -1.8375 -1.1521 -1.5266 -0.4575 1.1880 -0.3436 0.8917
2.2028 0.48 6 1.2224 -0.1152 -0.1838 1.0 0.0685 -1.8375 -1.1521 -1.5266 -0.4575 1.1880 -0.3436 0.8917
4.7852 0.72 9 1.2224 -0.1152 -0.1838 1.0 0.0685 -1.8375 -1.1521 -1.5266 -0.4575 1.1880 -0.3436 0.8917
3.1295 0.96 12 1.2224 -0.1152 -0.1838 1.0 0.0685 -1.8375 -1.1521 -1.5266 -0.4575 1.1880 -0.3436 0.8917

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1