vishalkatheriya18's picture
End of training
9711163 verified
|
raw
history blame
7.35 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-tiny-1k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnextv2-tiny-1k-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.625

convnextv2-tiny-1k-224-finetuned-eurosat

This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2021
  • Accuracy: 0.625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 130

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 2.0300 0.0
No log 2.0 3 2.0208 0.0
No log 3.0 5 1.9970 0.0
No log 4.0 6 1.9853 0.125
No log 5.0 7 1.9666 0.125
No log 6.0 9 1.9215 0.25
1.024 7.0 11 1.8757 0.125
1.024 8.0 12 1.8580 0.125
1.024 9.0 13 1.8413 0.125
1.024 10.0 15 1.7954 0.375
1.024 11.0 17 1.7510 0.5
1.024 12.0 18 1.7309 0.625
1.024 13.0 19 1.7132 0.625
0.8487 14.0 21 1.6768 0.625
0.8487 15.0 23 1.6402 0.625
0.8487 16.0 24 1.6197 0.625
0.8487 17.0 25 1.5952 0.625
0.8487 18.0 27 1.5259 0.625
0.8487 19.0 29 1.4599 0.625
0.6549 20.0 30 1.4526 0.625
0.6549 21.0 31 1.4459 0.625
0.6549 22.0 33 1.4222 0.625
0.6549 23.0 35 1.4136 0.625
0.6549 24.0 36 1.4238 0.625
0.6549 25.0 37 1.4286 0.625
0.6549 26.0 39 1.4231 0.625
0.479 27.0 41 1.3964 0.625
0.479 28.0 42 1.3757 0.625
0.479 29.0 43 1.3501 0.625
0.479 30.0 45 1.2779 0.625
0.479 31.0 47 1.2360 0.625
0.479 32.0 48 1.2185 0.625
0.479 33.0 49 1.1920 0.625
0.3504 34.0 51 1.1326 0.625
0.3504 35.0 53 1.1018 0.625
0.3504 36.0 54 1.0970 0.625
0.3504 37.0 55 1.1030 0.625
0.3504 38.0 57 1.1378 0.625
0.3504 39.0 59 1.1720 0.625
0.2864 40.0 60 1.1867 0.625
0.2864 41.0 61 1.1960 0.625
0.2864 42.0 63 1.1959 0.625
0.2864 43.0 65 1.1727 0.625
0.2864 44.0 66 1.1653 0.625
0.2864 45.0 67 1.1644 0.625
0.2864 46.0 69 1.1809 0.625
0.2357 47.0 71 1.1902 0.625
0.2357 48.0 72 1.1872 0.625
0.2357 49.0 73 1.1894 0.625
0.2357 50.0 75 1.1982 0.625
0.2357 51.0 77 1.2418 0.625
0.2357 52.0 78 1.2575 0.625
0.2357 53.0 79 1.2708 0.625
0.1561 54.0 81 1.2666 0.625
0.1561 55.0 83 1.2241 0.625
0.1561 56.0 84 1.2089 0.625
0.1561 57.0 85 1.1914 0.625
0.1561 58.0 87 1.1559 0.625
0.1561 59.0 89 1.1387 0.625
0.1453 60.0 90 1.1337 0.625
0.1453 61.0 91 1.1290 0.625
0.1453 62.0 93 1.1369 0.625
0.1453 63.0 95 1.1439 0.625
0.1453 64.0 96 1.1448 0.625
0.1453 65.0 97 1.1530 0.625
0.1453 66.0 99 1.1718 0.625
0.1271 67.0 101 1.1965 0.625
0.1271 68.0 102 1.2092 0.625
0.1271 69.0 103 1.2176 0.625
0.1271 70.0 105 1.2337 0.625
0.1271 71.0 107 1.2376 0.625
0.1271 72.0 108 1.2384 0.625
0.1271 73.0 109 1.2378 0.625
0.1153 74.0 111 1.2385 0.625
0.1153 75.0 113 1.2316 0.625
0.1153 76.0 114 1.2274 0.625
0.1153 77.0 115 1.2252 0.625
0.1153 78.0 117 1.2196 0.625
0.1153 79.0 119 1.2145 0.625
0.0882 80.0 120 1.2130 0.625
0.0882 81.0 121 1.2117 0.625
0.0882 82.0 123 1.2097 0.625
0.0882 83.0 125 1.2075 0.625
0.0882 84.0 126 1.2054 0.625
0.0882 85.0 127 1.2039 0.625
0.0882 86.0 129 1.2025 0.625
0.0987 86.6667 130 1.2021 0.625

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1