vishalkatheriya18's picture
End of training
5d17281 verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-tiny-1k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
model-index:
  - name: convnextv2-tiny-1k-224-finetuned-fullwear-v2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8229166666666666
          - name: Precision
            type: precision
            value: 0.8355769851835295

convnextv2-tiny-1k-224-finetuned-fullwear-v2

This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5128
  • Accuracy: 0.8229
  • Precision: 0.8356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision
No log 1.0 116 1.8085 0.5625 0.6486
No log 2.0 232 1.2627 0.6771 0.7218
No log 3.0 348 1.0071 0.6806 0.7166
No log 4.0 464 0.8603 0.7188 0.7466
1.3688 5.0 580 0.7240 0.7708 0.8074
1.3688 6.0 696 0.7496 0.7535 0.7994
1.3688 7.0 812 0.5832 0.8056 0.8176
1.3688 8.0 928 0.5809 0.7986 0.8156
0.4904 9.0 1044 0.5456 0.7986 0.8052
0.4904 10.0 1160 0.5833 0.7951 0.8198
0.4904 11.0 1276 0.5782 0.7986 0.8069
0.4904 12.0 1392 0.5128 0.8229 0.8356
0.2966 13.0 1508 0.5421 0.8160 0.8319
0.2966 14.0 1624 0.6090 0.7847 0.8171
0.2966 15.0 1740 0.6090 0.8021 0.8135

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1