|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-tiny-1k-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
model-index: |
|
- name: convnextv2-tiny-1k-224-finetuned-topwear-v2 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8177083333333334 |
|
- name: Precision |
|
type: precision |
|
value: 0.8427431106605461 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnextv2-tiny-1k-224-finetuned-topwear-v2 |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5060 |
|
- Accuracy: 0.8177 |
|
- Precision: 0.8427 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:| |
|
| No log | 1.0 | 77 | 1.4963 | 0.6615 | 0.7047 | |
|
| No log | 2.0 | 154 | 1.0708 | 0.6354 | 0.7218 | |
|
| No log | 3.0 | 231 | 0.8045 | 0.7708 | 0.8080 | |
|
| No log | 4.0 | 308 | 0.6572 | 0.7969 | 0.8195 | |
|
| No log | 5.0 | 385 | 0.5992 | 0.7969 | 0.8338 | |
|
| No log | 6.0 | 462 | 0.5877 | 0.8021 | 0.8398 | |
|
| 0.8831 | 7.0 | 539 | 0.5497 | 0.8073 | 0.8614 | |
|
| 0.8831 | 8.0 | 616 | 0.5412 | 0.8073 | 0.8275 | |
|
| 0.8831 | 9.0 | 693 | 0.5060 | 0.8177 | 0.8427 | |
|
| 0.8831 | 10.0 | 770 | 0.5167 | 0.8281 | 0.8372 | |
|
| 0.8831 | 11.0 | 847 | 0.6315 | 0.7969 | 0.8148 | |
|
| 0.8831 | 12.0 | 924 | 0.5166 | 0.8125 | 0.8318 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|