|
--- |
|
tags: |
|
- clip |
|
library_name: open_clip |
|
pipeline_tag: zero-shot-image-classification |
|
license: cc-by-nc-4.0 |
|
datasets: |
|
- visheratin/laion-coco-nllb |
|
--- |
|
|
|
## Model Summary |
|
|
|
NLLB-CLIP-SigLIP is a model that combines a text encoder from the [NLLB model](https://huggingface.co/facebook/nllb-200-distilled-600M) and an image encoder from the |
|
[SigLIP](https://huggingface.co/timm/ViT-B-16-SigLIP-384) model. This allows us to extend the model capabilities |
|
to 201 languages of the Flores-200. NLLB-CLIP sets state-of-the-art on the [Crossmodal-3600](https://google.github.io/crossmodal-3600/) dataset by performing very |
|
well on low-resource languages. You can find more details about the model in the [paper](https://arxiv.org/abs/2309.01859). |
|
|
|
This version performs much better than the [standard](https://huggingface.co/visheratin/nllb-clip-base-oc) version. You can see the results |
|
[here](https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_multilingual_retrieval_results.csv) and |
|
[here](https://github.com/gregor-ge/Babel-ImageNet/blob/main/evaluation_scripts/results_analysis.ipynb). |
|
|
|
## How to use |
|
|
|
<a target="_blank" href="https://colab.research.google.com/drive/1TE_jln3SwTDzjFsGqbdxIJkwrUlnNs3i"> |
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> |
|
</a> |
|
|
|
This model is integrated into OpenCLIP so that you can use it as any other model: |
|
|
|
``` |
|
!pip install -U open_clip_torch |
|
``` |
|
|
|
``` |
|
from open_clip import create_model_from_pretrained, get_tokenizer |
|
from PIL import Image |
|
import requests |
|
import torch |
|
|
|
model, transform = create_model_from_pretrained("nllb-clip-base-siglip", "v1", device="cuda") |
|
|
|
tokenizer = get_tokenizer("nllb-clip-base-siglip") |
|
|
|
class_options = ["бабочка", "butterfly", "kat"] |
|
class_langs = ["rus_Cyrl", "eng_Latn", "afr_Latn"] |
|
|
|
text_inputs = [] |
|
for i in range(len(class_options)): |
|
tokenizer.set_language(class_langs[i]) |
|
text_inputs.append(tokenizer(class_options[i])) |
|
text_inputs = torch.stack(text_inputs).squeeze(1).to("cuda") |
|
|
|
image_path = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg" |
|
image = Image.open(requests.get(image_path, stream=True).raw) |
|
|
|
image_inputs = transform(image).unsqueeze(0).to("cuda") |
|
|
|
with torch.inference_mode(): |
|
logits_per_image, logits_per_text = model.get_logits(image_inputs, text_inputs) |
|
|
|
print(logits_per_image.softmax(dim=-1)) |
|
``` |
|
|
|
## Acknowledgements |
|
|
|
I thank [ML Collective](https://mlcollective.org/) for providing Google Cloud compute resources to train the OpenCLIP-compatible version of NLLB-CLIP. |
|
|