Crop_Disease_model_1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2482
  • Accuracy: 0.7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.974 0.9787 23 2.9288 0.1573
2.8301 2.0 47 2.6713 0.5173
2.3995 2.9787 70 2.3223 0.5707
2.112 4.0 94 2.0321 0.604
1.8965 4.9787 117 1.8377 0.6133
1.6807 6.0 141 1.6895 0.6307
1.4942 6.9787 164 1.5807 0.6693
1.3849 8.0 188 1.5080 0.664
1.2975 8.9787 211 1.4605 0.6613
1.1747 10.0 235 1.3888 0.692
1.1457 10.9787 258 1.3622 0.692
1.0602 12.0 282 1.3318 0.6893
1.0296 12.9787 305 1.2968 0.7133
0.9556 14.0 329 1.2999 0.676
0.9317 14.9787 352 1.2625 0.7053
0.9134 16.0 376 1.2656 0.696
0.914 16.9787 399 1.2593 0.7013
0.9013 17.6170 414 1.2482 0.7

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vishnun0027/Crop_Disease_model_1

Finetuned
(1791)
this model