intent_classfication2
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1321
- Accuracy: 0.9618
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.6215 | 1.0 | 655 | 1.0384 | 0.8342 |
1.0518 | 2.0 | 1310 | 0.5333 | 0.8892 |
0.676 | 3.0 | 1965 | 0.3383 | 0.9228 |
0.3837 | 4.0 | 2620 | 0.2589 | 0.9373 |
0.3307 | 5.0 | 3275 | 0.2148 | 0.9415 |
0.2926 | 6.0 | 3930 | 0.1872 | 0.9492 |
0.2465 | 7.0 | 4585 | 0.1698 | 0.9530 |
0.2338 | 8.0 | 5240 | 0.1585 | 0.9553 |
0.2156 | 9.0 | 5895 | 0.1486 | 0.9599 |
0.2078 | 10.0 | 6550 | 0.1429 | 0.9603 |
0.2 | 11.0 | 7205 | 0.1392 | 0.9603 |
0.1973 | 12.0 | 7860 | 0.1362 | 0.9614 |
0.184 | 13.0 | 8515 | 0.1339 | 0.9622 |
0.1884 | 14.0 | 9170 | 0.1326 | 0.9622 |
0.1871 | 15.0 | 9825 | 0.1321 | 0.9618 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for vishnun0027/intent_classfication2
Base model
google-bert/bert-base-uncased