intent_classfication2

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1321
  • Accuracy: 0.9618

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6215 1.0 655 1.0384 0.8342
1.0518 2.0 1310 0.5333 0.8892
0.676 3.0 1965 0.3383 0.9228
0.3837 4.0 2620 0.2589 0.9373
0.3307 5.0 3275 0.2148 0.9415
0.2926 6.0 3930 0.1872 0.9492
0.2465 7.0 4585 0.1698 0.9530
0.2338 8.0 5240 0.1585 0.9553
0.2156 9.0 5895 0.1486 0.9599
0.2078 10.0 6550 0.1429 0.9603
0.2 11.0 7205 0.1392 0.9603
0.1973 12.0 7860 0.1362 0.9614
0.184 13.0 8515 0.1339 0.9622
0.1884 14.0 9170 0.1326 0.9622
0.1871 15.0 9825 0.1321 0.9618

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for vishnun0027/intent_classfication2

Finetuned
(3272)
this model