anton-l's picture
anton-l HF staff
Update README.md
5715dc7
|
raw
history blame
2.74 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - automatic-speech-recognition
  - librispeech_asr
  - robust-speech-event
  - en
  - generated_from_trainer
datasets:
  - librispeech_asr
model-index:
  - name: XLS-R-300M - English
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: LibriSpeech ASR
          type: librispeech_asr
          args: clean
        metrics:
          - name: Test WER
            type: wer
            value: 12.29
          - name: Test CER
            type: cer
            value: 3.34
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: en
        metrics:
          - name: Validation WER
            type: wer
            value: 36.75
          - name: Validation CER
            type: cer
            value: 14.83

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the librispeech_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1444
  • Wer: 0.1167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9365 4.17 500 2.9398 0.9999
1.5444 8.33 1000 0.5947 0.4289
1.1367 12.5 1500 0.2751 0.2366
0.9972 16.66 2000 0.2032 0.1797
0.9118 20.83 2500 0.1786 0.1479
0.8664 24.99 3000 0.1641 0.1408
0.8251 29.17 3500 0.1537 0.1267
0.793 33.33 4000 0.1525 0.1244
0.785 37.5 4500 0.1470 0.1184
0.7612 41.66 5000 0.1446 0.1177
0.7478 45.83 5500 0.1449 0.1176
0.7443 49.99 6000 0.1444 0.1167

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0