metadata
language:
- mar
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: whisper_marathi_V2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: mr
split: test
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 545.1292631036039
whisper_marathi_V2
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4603
- Wer: 545.1293
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0673 | 4.07 | 1000 | 0.2908 | 100.4062 |
0.0045 | 8.13 | 2000 | 0.3941 | 217.4973 |
0.0003 | 12.2 | 3000 | 0.4377 | 474.5600 |
0.0002 | 16.26 | 4000 | 0.4603 | 545.1293 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2