language:
- tr
arXiv: 2403.01308
library_name: transformers
pipeline_tag: text2text-generation
inference:
parameters:
max_new_tokens: 32
widget:
- text: >-
Soru yarat: cevap: Alan Mathison Turing İngiliz matematikçi, bilgisayar
bilimcisi ve kriptolog. II. Dünya Savaşı sırasında Alman şifrelerinin
kırılmasında çok önemli bir rol oynadığı için savaş kahramanı sayılmıştır.
Ayrıca Manchester Üniversitesi'nde çalıştığı yıllarda, Turing makinesi
denilen algoritma tanımı ile modern bilgisayarların kavramsal temelini
atmıştır.
example_title: Question generation
- text: >-
Soru cevapla: Turing makinesi denilen algoritma tanımı ile modern
bilgisayarların kavramsal temelini atan bilim insanı kimdir? kaynak: Alan
Mathison Turing İngiliz matematikçi, bilgisayar bilimcisi ve kriptolog.
II. Dünya Savaşı sırasında Alman şifrelerinin kırılmasında çok önemli bir
rol oynadığı için savaş kahramanı sayılmıştır. Ayrıca Manchester
Üniversitesi'nde çalıştığı yıllarda, Turing makinesi denilen algoritma
tanımı ile modern bilgisayarların kavramsal temelini atmıştır.
example_title: Question answering
- text: >-
yanıtları çıkar: Alan Mathison Turing İngiliz matematikçi, bilgisayar
bilimcisi ve kriptolog. II. Dünya Savaşı sırasında Alman şifrelerinin
kırılmasında çok önemli bir rol oynadığı için savaş kahramanı sayılmıştır.
<hl> Ayrıca Manchester Üniversitesi'nde çalıştığı yıllarda, Turing
makinesi denilen algoritma tanımı ile modern bilgisayarların kavramsal
temelini atmıştır <hl> .
example_title: Answer Extraction
license: cc-by-nc-sa-4.0
datasets:
- vngrs-ai/vngrs-web-corpus
VBART Model Card
Model Description
VBART is the first sequence-to-sequence LLM pre-trained on Turkish corpora from scratch on a large scale. It was pre-trained by VNGRS in February 2023.
The model is capable of conditional text generation tasks such as text summarization, paraphrasing, and title generation when fine-tuned.
It outperforms its multilingual counterparts, albeit being much smaller than other implementations.
This repository contains fine-tuned TensorFlow and Safetensors weights of VBART for question-answering and generation tasks described in the paper.
- Developed by: VNGRS-AI
- Model type: Transformer encoder-decoder based on mBART architecture
- Language(s) (NLP): Turkish
- License: CC BY-NC-SA 4.0
- Finetuned from: VBART-Large
- Paper: arXiv
How to Get Started with the Model
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("vngrs-ai/VBART-Large-QAQG",
model_input_names=['input_ids', 'attention_mask'])
# Uncomment the device_map kwarg and delete the closing bracket to use model for inference on GPU
model = AutoModelForSeq2SeqLM.from_pretrained("vngrs-ai/VBART-Large-QAQG")#, device_map="auto")
context="..."
question="..."
highlighted_context="..."
# Prompt for question generation
qg_prompt = f'Soru yarat: cevap: {context}'
# Prompt for question answering
qa_prompt = f'Soru cevapla: {question} kaynak: {context}'
# Prompt for answer extraction
ae_prompt = f'yanıtları çıkar: {highlighted_context}'
token_input = tokenizer(ae_prompt, return_tensors="pt")#.to('cuda')
outputs = model.generate(**token_input)
print(tokenizer.decode(outputs[0]))
Training Details
Fine-tuning prompt
This model is fine-tuned on three tasks:
- question answering: Answer a question in a given context. Prompted with
Soru cevapla: <question> kaynak: <context>
- question generation: Generate a question from a given context. Will accept a highlight token (
<hl>
, without spaces) to specify the answer to the question generated. Prompted withSoru yarat: <context>
- answer extraction: Will extract possible answers from a highlighted range (using the same highlight token). Prompted with
yanıtları çıkar: <context with highlighted parts>
Training Data
The base model is pre-trained on vngrs-web-corpus. It is curated by cleaning and filtering Turkish parts of OSCAR-2201 and mC4 datasets. These datasets consist of documents of unstructured web crawl data. More information about the dataset can be found on their respective pages. Data is filtered using a set of heuristics and certain rules, explained in the appendix of our paper.
The fine-tuning dataset is TQuAD, which has two versions. We have concatenated them and dropped duplicate samples. More information about this process can be found in Appendix B of our paper.
Limitations
This model is fine-tuned for question-answering and question-generation tasks with specific prompts. It is not intended to be used in any other case and can not be fine-tuned to any other task with full performance of the base model. It is also not guaranteed that this model will work without specified prompts.
Training Procedure
Pre-trained for 30 days and for a total of 708B tokens. Finetuned for 5 epoch.
Hardware
- GPUs: 8 x Nvidia A100-80 GB
Software
- TensorFlow
Hyperparameters
Pretraining
- Training regime: fp16 mixed precision
- Training objective: Sentence permutation and span masking (using mask lengths sampled from Poisson distribution λ=3.5, masking 30% of tokens)
- Optimizer : Adam optimizer (β1 = 0.9, β2 = 0.98, Ɛ = 1e-6)
- Scheduler: Custom scheduler from the original Transformers paper (20,000 warm-up steps)
- Dropout: 0.1 (dropped to 0.05 and then to 0 in the last 165k and 205k steps, respectively)
- Initial Learning rate: 5e-6
- Training tokens: 708B
Fine-tuning
- Training regime: fp16 mixed precision
- Optimizer : Adam optimizer (β1 = 0.9, β2 = 0.98, Ɛ = 1e-6)
- Scheduler: Linear decay scheduler
- Dropout: 0.1
- Learning rate: 5e-5
- Fine-tune epochs: 5
Metrics
Citation
@article{turker2024vbart,
title={VBART: The Turkish LLM},
author={Turker, Meliksah and Ari, Erdi and Han, Aydin},
journal={arXiv preprint arXiv:2403.01308},
year={2024}
}