|
# Vocabulary Trimmed [cardiffnlp/xlm-roberta-base-tweet-sentiment-en](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-en): `vocabtrimmer/xlm-roberta-base-tweet-sentiment-en-trimmed-en-5000` |
|
This model is a trimmed version of [cardiffnlp/xlm-roberta-base-tweet-sentiment-en](https://huggingface.co/cardiffnlp/xlm-roberta-base-tweet-sentiment-en) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. |
|
Following table shows a summary of the trimming process. |
|
|
|
| | cardiffnlp/xlm-roberta-base-tweet-sentiment-en | vocabtrimmer/xlm-roberta-base-tweet-sentiment-en-trimmed-en-5000 | |
|
|:---------------------------|:-------------------------------------------------|:-------------------------------------------------------------------| |
|
| parameter_size_full | 278,045,955 | 89,885,955 | |
|
| parameter_size_embedding | 192,001,536 | 3,841,536 | |
|
| vocab_size | 250,002 | 5,002 | |
|
| compression_rate_full | 100.0 | 32.33 | |
|
| compression_rate_embedding | 100.0 | 2.0 | |
|
|
|
|
|
Following table shows the parameter used to trim vocabulary. |
|
|
|
| language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |
|
|:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| |
|
| en | vocabtrimmer/mc4_validation | text | en | validation | 5000 | 2 | |