Edit model card

W2V2-BERT-Malayalam

This model is a fine-tuned version of facebook/w2v-bert-2.0 on an these datasets: IMASC, MSC, OpenSLR Malayalam Train split, Festvox Malayalam, common_voice_16_1 It achieves the following results on the evaluation set:

  • Loss: 0.1722
  • Wer: 0.1299

Training procedure

Trained on NVIDIA A100 GPU

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1416 0.46 600 0.3393 0.4616
0.1734 0.92 1200 0.2414 0.3493
0.1254 1.38 1800 0.2205 0.2963
0.1097 1.84 2400 0.2157 0.3133
0.0923 2.3 3000 0.1854 0.2473
0.0792 2.76 3600 0.1939 0.2471
0.0696 3.22 4200 0.1720 0.2282
0.0589 3.68 4800 0.1768 0.2013
0.0552 4.14 5400 0.1635 0.1864
0.0437 4.6 6000 0.1501 0.1826
0.0408 5.06 6600 0.1500 0.1645
0.0314 5.52 7200 0.1559 0.1655
0.0317 5.98 7800 0.1448 0.1553
0.022 6.44 8400 0.1592 0.1590
0.0218 6.9 9000 0.1431 0.1458
0.0154 7.36 9600 0.1514 0.1366
0.0141 7.82 10200 0.1540 0.1383
0.0113 8.28 10800 0.1558 0.1391
0.0085 8.74 11400 0.1612 0.1356
0.0072 9.2 12000 0.1697 0.1289
0.0046 9.66 12600 0.1722 0.1299

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
113
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vrclc/W2V2-BERT-Malayalam

Finetuned
(173)
this model

Datasets used to train vrclc/W2V2-BERT-Malayalam

Space using vrclc/W2V2-BERT-Malayalam 1

Collection including vrclc/W2V2-BERT-Malayalam

Evaluation results