layoutlm-morning

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the 01_load_data_set dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6956
  • Answer: {'precision': 0.6905016008537886, 'recall': 0.799752781211372, 'f1': 0.7411225658648338, 'number': 809}
  • Header: {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119}
  • Question: {'precision': 0.7729296527159395, 'recall': 0.8150234741784037, 'f1': 0.793418647166362, 'number': 1065}
  • Overall Precision: 0.7134
  • Overall Recall: 0.7782
  • Overall F1: 0.7444
  • Overall Accuracy: 0.8070

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8333 1.0 10 1.6190 {'precision': 0.0047694753577106515, 'recall': 0.003708281829419036, 'f1': 0.004172461752433936, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.19169329073482427, 'recall': 0.11267605633802817, 'f1': 0.1419278533412182, 'number': 1065} 0.0980 0.0617 0.0757 0.3380
1.4863 2.0 20 1.2878 {'precision': 0.18296892980437285, 'recall': 0.1965389369592089, 'f1': 0.1895113230035757, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.42759795570698467, 'recall': 0.47136150234741786, 'f1': 0.4484144707458687, 'number': 1065} 0.3235 0.3317 0.3276 0.5761
1.1342 3.0 30 0.9369 {'precision': 0.4929444967074318, 'recall': 0.6477132262051916, 'f1': 0.5598290598290597, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5810372771474879, 'recall': 0.6732394366197183, 'f1': 0.6237494562853414, 'number': 1065} 0.5340 0.6227 0.5749 0.7069
0.8661 4.0 40 0.7953 {'precision': 0.5635864592863677, 'recall': 0.761433868974042, 'f1': 0.6477392218717138, 'number': 809} {'precision': 0.06779661016949153, 'recall': 0.03361344537815126, 'f1': 0.0449438202247191, 'number': 119} {'precision': 0.6269035532994924, 'recall': 0.6957746478873239, 'f1': 0.6595460614152203, 'number': 1065} 0.5831 0.6829 0.6291 0.7567
0.6917 5.0 50 0.7124 {'precision': 0.6372045220966084, 'recall': 0.7663782447466008, 'f1': 0.6958473625140292, 'number': 809} {'precision': 0.19767441860465115, 'recall': 0.14285714285714285, 'f1': 0.16585365853658537, 'number': 119} {'precision': 0.673469387755102, 'recall': 0.7746478873239436, 'f1': 0.7205240174672489, 'number': 1065} 0.6401 0.7336 0.6837 0.7887
0.591 6.0 60 0.7081 {'precision': 0.6201171875, 'recall': 0.7849196538936959, 'f1': 0.6928532460447353, 'number': 809} {'precision': 0.11009174311926606, 'recall': 0.10084033613445378, 'f1': 0.10526315789473684, 'number': 119} {'precision': 0.7084063047285464, 'recall': 0.7596244131455399, 'f1': 0.7331218849116448, 'number': 1065} 0.64 0.7306 0.6823 0.7810
0.515 7.0 70 0.6769 {'precision': 0.665625, 'recall': 0.7898640296662547, 'f1': 0.7224420576596947, 'number': 809} {'precision': 0.21238938053097345, 'recall': 0.20168067226890757, 'f1': 0.20689655172413793, 'number': 119} {'precision': 0.730836236933798, 'recall': 0.787793427230047, 'f1': 0.7582467239042024, 'number': 1065} 0.6763 0.7536 0.7129 0.7947
0.4607 8.0 80 0.6785 {'precision': 0.6605128205128206, 'recall': 0.796044499381953, 'f1': 0.7219730941704037, 'number': 809} {'precision': 0.20967741935483872, 'recall': 0.2184873949579832, 'f1': 0.2139917695473251, 'number': 119} {'precision': 0.731686541737649, 'recall': 0.8065727699530516, 'f1': 0.7673068334077713, 'number': 1065} 0.6727 0.7672 0.7168 0.7987
0.408 9.0 90 0.6652 {'precision': 0.6800847457627118, 'recall': 0.7935723114956736, 'f1': 0.7324586423274386, 'number': 809} {'precision': 0.25806451612903225, 'recall': 0.2689075630252101, 'f1': 0.26337448559670784, 'number': 119} {'precision': 0.7521588946459413, 'recall': 0.8178403755868544, 'f1': 0.783625730994152, 'number': 1065} 0.6941 0.7752 0.7324 0.8068
0.3936 10.0 100 0.6655 {'precision': 0.6747114375655824, 'recall': 0.7948084054388134, 'f1': 0.7298524404086267, 'number': 809} {'precision': 0.336734693877551, 'recall': 0.2773109243697479, 'f1': 0.30414746543778803, 'number': 119} {'precision': 0.7747747747747747, 'recall': 0.8075117370892019, 'f1': 0.7908045977011493, 'number': 1065} 0.7108 0.7707 0.7395 0.8122
0.3423 11.0 110 0.6888 {'precision': 0.7035398230088495, 'recall': 0.7861557478368356, 'f1': 0.7425569176882663, 'number': 809} {'precision': 0.27702702702702703, 'recall': 0.3445378151260504, 'f1': 0.30711610486891383, 'number': 119} {'precision': 0.7586805555555556, 'recall': 0.8206572769953052, 'f1': 0.7884528642309426, 'number': 1065} 0.7037 0.7782 0.7391 0.8060
0.3293 12.0 120 0.6758 {'precision': 0.679324894514768, 'recall': 0.796044499381953, 'f1': 0.7330677290836654, 'number': 809} {'precision': 0.3018867924528302, 'recall': 0.2689075630252101, 'f1': 0.28444444444444444, 'number': 119} {'precision': 0.7754919499105546, 'recall': 0.8140845070422535, 'f1': 0.7943197434722858, 'number': 1065} 0.7104 0.7742 0.7409 0.8123
0.3062 13.0 130 0.6923 {'precision': 0.698051948051948, 'recall': 0.7972805933250927, 'f1': 0.7443739180611655, 'number': 809} {'precision': 0.2890625, 'recall': 0.31092436974789917, 'f1': 0.29959514170040485, 'number': 119} {'precision': 0.7679509632224168, 'recall': 0.8234741784037559, 'f1': 0.79474399637517, 'number': 1065} 0.7106 0.7822 0.7447 0.8091
0.2858 14.0 140 0.6966 {'precision': 0.6915688367129136, 'recall': 0.8009888751545118, 'f1': 0.7422680412371134, 'number': 809} {'precision': 0.32142857142857145, 'recall': 0.3025210084033613, 'f1': 0.3116883116883117, 'number': 119} {'precision': 0.7813911472448057, 'recall': 0.812206572769953, 'f1': 0.796500920810313, 'number': 1065} 0.7185 0.7772 0.7467 0.8060
0.286 15.0 150 0.6956 {'precision': 0.6905016008537886, 'recall': 0.799752781211372, 'f1': 0.7411225658648338, 'number': 809} {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119} {'precision': 0.7729296527159395, 'recall': 0.8150234741784037, 'f1': 0.793418647166362, 'number': 1065} 0.7134 0.7782 0.7444 0.8070

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
91
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for vsystem/layoutlm-morning

Finetuned
(151)
this model