|
```python |
|
import torch |
|
import typing |
|
import functorch |
|
import itertools |
|
``` |
|
|
|
# 2.3 Tensors |
|
### We diagrams tensors, which can be vertically and horizontally decomposed. |
|
<img src="SVG/rediagram.svg" width="700"> |
|
|
|
|
|
```python |
|
# This diagram shows a function h : 3, 4 2, 6 -> 1 2 constructed out of f: 4 2, 6 -> 3 3 and g: 3, 3 3 -> 1 2 |
|
# We use assertions and random outputs to represent generic functions, and how diagrams relate to code. |
|
T = torch.Tensor |
|
def f(x0 : T, x1 : T): |
|
""" f: 4 2, 6 -> 3 3 """ |
|
assert x0.size() == torch.Size([4,2]) |
|
assert x1.size() == torch.Size([6]) |
|
return torch.rand([3,3]) |
|
def g(x0 : T, x1: T): |
|
""" g: 3, 3 3 -> 1 2 """ |
|
assert x0.size() == torch.Size([3]) |
|
assert x1.size() == torch.Size([3, 3]) |
|
return torch.rand([1,2]) |
|
def h(x0 : T, x1 : T, x2 : T): |
|
""" h: 3, 4 2, 6 -> 1 2""" |
|
assert x0.size() == torch.Size([3]) |
|
assert x1.size() == torch.Size([4, 2]) |
|
assert x2.size() == torch.Size([6]) |
|
return g(x0, f(x1,x2)) |
|
|
|
h(torch.rand([3]), torch.rand([4, 2]), torch.rand([6])) |
|
``` |
|
|
|
|
|
|
|
|
|
tensor([[0.6837, 0.6853]]) |
|
|
|
|
|
|
|
## 2.3.1 Indexes |
|
### Figure 8: Indexes |
|
<img src="SVG/indexes.svg" width="700"> |
|
|
|
|
|
```python |
|
# Extracting a subtensor is a process we are familiar with. Consider, |
|
# A (4 3) tensor |
|
table = torch.arange(0,12).view(4,3) |
|
row = table[2,:] |
|
row |
|
``` |
|
|
|
|
|
|
|
|
|
tensor([6, 7, 8]) |
|
|
|
|
|
|
|
### Figure 9: Subtensors |
|
<img src="SVG/subtensors.svg" width="700"> |
|
|
|
|
|
```python |
|
# Different orders of access give the same result. |
|
# Set up a random (5 7) tensor |
|
a, b = 5, 7 |
|
Xab = torch.rand([a] + [b]) |
|
# Show that all pairs of indexes give the same result |
|
for ia, jb in itertools.product(range(a), range(b)): |
|
assert Xab[ia, jb] == Xab[ia, :][jb] |
|
assert Xab[ia, jb] == Xab[:, jb][ia] |
|
``` |
|
|
|
## 2.3.2 Broadcasting |
|
### Figure 10: Broadcasting |
|
<img src="SVG/broadcasting0.svg" width="700"> |
|
<img src="SVG/broadcasting0a.svg" width="700"> |
|
|
|
|
|
```python |
|
a, b, c, d = [3], [2], [4], [3] |
|
T = torch.Tensor |
|
|
|
# We have some function from a to b; |
|
def G(Xa: T) -> T: |
|
""" G: a -> b """ |
|
return sum(Xa**2) + torch.ones(b) |
|
|
|
# We could bootstrap a definition of broadcasting, |
|
# Note that we are using spaces to indicate tensoring. |
|
# We will use commas for tupling, which is in line with standard notation while writing code. |
|
def Gc(Xac: T) -> T: |
|
""" G c : a c -> b c """ |
|
Ybc = torch.zeros(b + c) |
|
for j in range(c[0]): |
|
Ybc[:,jc] = G(Xac[:,jc]) |
|
return Ybc |
|
|
|
# Or use a PyTorch command, |
|
# G *: a * -> b * |
|
Gs = torch.vmap(G, -1, -1) |
|
|
|
# We feed a random input, and see whether applying an index before or after |
|
# gives the same result. |
|
Xac = torch.rand(a + c) |
|
for jc in range(c[0]): |
|
assert torch.allclose(G(Xac[:,jc]), Gc(Xac)[:,jc]) |
|
assert torch.allclose(G(Xac[:,jc]), Gs(Xac)[:,jc]) |
|
|
|
# This shows how our definition of broadcasting lines up with that used by PyTorch vmap. |
|
``` |
|
|
|
### Figure 11: Inner Broadcasting |
|
<img src="SVG/inner_broadcasting0.svg" width="700"> |
|
<img src="SVG/inner broadcasting0a.svg" width="700"> |
|
|
|
|
|
```python |
|
a, b, c, d = [3], [2], [4], [3] |
|
T = torch.Tensor |
|
|
|
# We have some function which can be inner broadcast, |
|
def H(Xa: T, Xd: T) -> T: |
|
""" H: a, d -> b """ |
|
return torch.sum(torch.sqrt(Xa**2)) + torch.sum(torch.sqrt(Xd ** 2)) + torch.ones(b) |
|
|
|
# We can bootstrap inner broadcasting, |
|
def Hc0(Xca: T, Xd : T) -> T: |
|
""" c0 H: c a, d -> c d """ |
|
# Recall that we defined a, b, c, d in [_] arrays. |
|
Ycb = torch.zeros(c + b) |
|
for ic in range(c[0]): |
|
Ycb[ic, :] = H(Xca[ic, :], Xd) |
|
return Ycb |
|
|
|
# But vmap offers a clear way of doing it, |
|
# *0 H: * a, d -> * c |
|
Hs0 = torch.vmap(H, (0, None), 0) |
|
|
|
# We can show this satisfies Definition 2.14 by, |
|
Xca = torch.rand(c + a) |
|
Xd = torch.rand(d) |
|
for ic in range(c[0]): |
|
assert torch.allclose(Hc0(Xca, Xd)[ic, :], H(Xca[ic, :], Xd)) |
|
assert torch.allclose(Hs0(Xca, Xd)[ic, :], H(Xca[ic, :], Xd)) |
|
|
|
``` |
|
|
|
### Figure 12 Elementwise operations |
|
<img src="SVG/elementwise0.svg" width="700"> |
|
|
|
|
|
```python |
|
|
|
# Elementwise operations are implemented as usual ie |
|
def f(x): |
|
"f : 1 -> 1" |
|
return x ** 2 |
|
|
|
# We broadcast an elementwise operation, |
|
# f *: * -> * |
|
fs = torch.vmap(f) |
|
|
|
Xa = torch.rand(a) |
|
for i in range(a[0]): |
|
# And see that it aligns with the index before = index after framework. |
|
assert torch.allclose(f(Xa[i]), fs(Xa)[i]) |
|
# But, elementwise operations are implied, so no special implementation is needed. |
|
assert torch.allclose(f(Xa[i]), f(Xa)[i]) |
|
``` |
|
|
|
# 2.4 Linearity |
|
## 2.4.2 Implementing Linearity and Common Operations |
|
### Figure 17: Multi-head Attention and Einsum |
|
<img src="SVG/implementation.svg" width="700"> |
|
|
|
|
|
```python |
|
import math |
|
import einops |
|
x, y, k, h = 5, 3, 4, 2 |
|
Q = torch.rand([y, k, h]) |
|
K = torch.rand([x, k, h]) |
|
|
|
# Local memory contains, |
|
# Q: y k h # K: x k h |
|
# Outer products, transposes, inner products, and |
|
# diagonalization reduce to einops expressions. |
|
# Transpose K, |
|
K = einops.einsum(K, 'x k h -> k x h') |
|
# Outer product and diagonalize, |
|
X = einops.einsum(Q, K, 'y k1 h, k2 x h -> y k1 k2 x h') |
|
# Inner product, |
|
X = einops.einsum(X, 'y k k x h -> y x h') |
|
# Scale, |
|
X = X / math.sqrt(k) |
|
|
|
Q = torch.rand([y, k, h]) |
|
K = torch.rand([x, k, h]) |
|
|
|
# Local memory contains, |
|
# Q: y k h # K: x k h |
|
X = einops.einsum(Q, K, 'y k h, x k h -> y x h') |
|
X = X / math.sqrt(k) |
|
|
|
``` |
|
|
|
## 2.4.3 Linear Algebra |
|
### Figure 18: Graphical Linear Algebra |
|
<img src="SVG/linear_algebra.svg" width="700"> |
|
|
|
|
|
```python |
|
# We will do an exercise implementing some of these equivalences. |
|
# The reader can follow this exercise to get a better sense of how linear functions can be implemented, |
|
# and how different forms are equivalent. |
|
|
|
a, b, c, d = [3], [4], [5], [3] |
|
|
|
# We will be using this function *a lot* |
|
es = einops.einsum |
|
|
|
# F: a b c |
|
F_matrix = torch.rand(a + b + c) |
|
|
|
# As an exericse we will show that the linear map F: a -> b c can be transposed in two ways. |
|
# Either, we can broadcast, or take an outer product. We will show these are the same. |
|
|
|
# Transposing by broadcasting |
|
# |
|
def F_func(Xa: T): |
|
""" F: a -> b c """ |
|
return es(Xa,F_matrix,'a,a b c->b c',) |
|
# * F: * a -> * b c |
|
F_broadcast = torch.vmap(F_func, 0, 0) |
|
|
|
# We then reduce it, as in the diagram, |
|
# b a -> b b c -> c |
|
def F_broadcast_transpose(Xba: T): |
|
""" (b F) (.b c): b a -> c """ |
|
Xbbc = F_broadcast(Xba) |
|
return es(Xbbc, 'b b c -> c') |
|
|
|
# Transpoing by linearity |
|
# |
|
# We take the outer product of Id(b) and F, and follow up with a inner product. |
|
# This gives us, |
|
F_outerproduct = es(torch.eye(b[0]), F_matrix,'b0 b1, a b2 c->b0 b1 a b2 c',) |
|
# Think of this as Id(b) F: b0 a -> b1 b2 c arranged into an associated b0 b1 a b2 c tensor. |
|
# We then take the inner product. This gives a (b a c) matrix, which can be used for a (b a -> c) map. |
|
F_linear_transpose = es(F_outerproduct,'b B a B c->b a c',) |
|
|
|
# We contend that these are the same. |
|
# |
|
Xba = torch.rand(b + a) |
|
assert torch.allclose( |
|
F_broadcast_transpose(Xba), |
|
es(Xba,F_linear_transpose, 'b a, b a c -> c')) |
|
|
|
# Furthermore, lets prove the unit-inner product identity. |
|
# |
|
# The first step is an outer product with the unit, |
|
outerUnit = lambda Xb: es(Xb, torch.eye(b[0]), 'b0, b1 b2 -> b0 b1 b2') |
|
# The next is a inner product over the first two axes, |
|
dotOuter = lambda Xbbb: es(Xbbb, 'b0 b0 b1 -> b1') |
|
# Applying both of these *should* be the identity, and hence leave any input unchanged. |
|
Xb = torch.rand(b) |
|
assert torch.allclose( |
|
Xb, |
|
dotOuter(outerUnit(Xb))) |
|
|
|
# Therefore, we can confidently use the expressions in Figure 18 to manipulate expressions. |
|
``` |
|
|
|
# 3.1 Basic Multi-Layer Perceptron |
|
### Figure 19: Implementing a Basic Multi-Layer Perceptron |
|
<img src="SVG/imagerec.svg" width="700"> |
|
|
|
|
|
```python |
|
import torch.nn as nn |
|
# Basic Image Recogniser |
|
# This is a close copy of an introductory PyTorch tutorial: |
|
# https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html |
|
class BasicImageRecogniser(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.flatten = nn.Flatten() |
|
self.linear_relu_stack = nn.Sequential( |
|
nn.Linear(28*28, 512), |
|
nn.ReLU(), |
|
nn.Linear(512, 512), |
|
nn.ReLU(), |
|
nn.Linear(512, 10), |
|
) |
|
def forward(self, x): |
|
x = self.flatten(x) |
|
x = self.linear_relu_stack(x) |
|
y_pred = nn.Softmax(x) |
|
return y_pred |
|
|
|
my_BasicImageRecogniser = BasicImageRecogniser() |
|
my_BasicImageRecogniser.forward(torch.rand([1,28,28])) |
|
``` |
|
|
|
|
|
|
|
|
|
Softmax( |
|
dim=tensor([[ 0.0150, -0.0301, 0.1395, -0.0558, 0.0024, -0.0613, -0.0163, 0.0134, |
|
0.0577, -0.0624]], grad_fn=<AddmmBackward0>) |
|
) |
|
|
|
|
|
|
|
# 3.2 Neural Circuit Diagrams for the Transformer Architecture |
|
### Figure 20: Scaled Dot-Product Attention |
|
<img src="SVG/scaled_attention.svg" width="700"> |
|
|
|
|
|
```python |
|
# Note, that we need to accomodate batches, hence the ... to capture additional axes. |
|
|
|
# We can do the algorithm step by step, |
|
def ScaledDotProductAttention(q: T, k: T, v: T) -> T: |
|
''' yk, xk, xk -> yk ''' |
|
klength = k.size()[-1] |
|
# Transpose |
|
k = einops.einsum(k, '... x k -> ... k x') |
|
# Matrix Multiply / Inner Product |
|
x = einops.einsum(q, k, '... y k, ... k x -> ... y x') |
|
# Scale |
|
x = x / math.sqrt(klength) |
|
# SoftMax |
|
x = torch.nn.Softmax(-1)(x) |
|
# Matrix Multiply / Inner Product |
|
x = einops.einsum(x, v, '... y x, ... x k -> ... y k') |
|
return x |
|
|
|
# Alternatively, we can simultaneously broadcast linear functions. |
|
def ScaledDotProductAttention(q: T, k: T, v: T) -> T: |
|
''' yk, xk, xk -> yk ''' |
|
klength = k.size()[-1] |
|
# Inner Product and Scale |
|
x = einops.einsum(q, k, '... y k, ... x k -> ... y x') |
|
# Scale and SoftMax |
|
x = torch.nn.Softmax(-1)(x / math.sqrt(klength)) |
|
# Final Inner Product |
|
x = einops.einsum(x, v, '... y x, ... x k -> ... y k') |
|
return x |
|
``` |
|
|
|
### Figure 21: Multi-Head Attention |
|
<img src="SVG/multihead0.svg" width="700"> |
|
|
|
We will be implementing this algorithm. This shows us how we go from diagrams to implementations, and begins to give an idea of how organized diagrams leads to organized code. |
|
|
|
|
|
```python |
|
def MultiHeadDotProductAttention(q: T, k: T, v: T) -> T: |
|
''' ykh, xkh, xkh -> ykh ''' |
|
klength = k.size()[-2] |
|
x = einops.einsum(q, k, '... y k h, ... x k h -> ... y x h') |
|
x = torch.nn.Softmax(-2)(x / math.sqrt(klength)) |
|
x = einops.einsum(x, v, '... y x h, ... x k h -> ... y k h') |
|
return x |
|
|
|
# We implement this component as a neural network model. |
|
# This is necessary when there are bold, learned components that need to be initialized. |
|
class MultiHeadAttention(nn.Module): |
|
# Multi-Head attention has various settings, which become variables |
|
# for the initializer. |
|
def __init__(self, m, k, h): |
|
super().__init__() |
|
self.m, self.k, self.h = m, k, h |
|
# Set up all the boldface, learned components |
|
# Note how they bind axes we want to split, which we do later with einops. |
|
self.Lq = nn.Linear(m, k*h, False) |
|
self.Lk = nn.Linear(m, k*h, False) |
|
self.Lv = nn.Linear(m, k*h, False) |
|
self.Lo = nn.Linear(k*h, m, False) |
|
|
|
|
|
# We have endogenous data (Eym) and external / injected data (Xxm) |
|
def forward(self, Eym, Xxm): |
|
""" y m, x m -> y m """ |
|
# We first generate query, key, and value vectors. |
|
# Linear layers are automatically broadcast. |
|
|
|
# However, the k and h axes are bound. We define an unbinder to handle the outputs, |
|
unbind = lambda x: einops.rearrange(x, '... (k h)->... k h', h=self.h) |
|
q = unbind(self.Lq(Eym)) |
|
k = unbind(self.Lk(Xxm)) |
|
v = unbind(self.Lv(Xxm)) |
|
|
|
# We feed q, k, and v to standard Multi-Head inner product Attention |
|
o = MultiHeadDotProductAttention(q, k, v) |
|
|
|
# Rebind to feed to the final learned layer, |
|
o = einops.rearrange(o, '... k h-> ... (k h)', h=self.h) |
|
return self.Lo(o) |
|
|
|
# Now we can run it on fake data; |
|
y, x, m, jc, heads = [20], [22], [128], [16], 4 |
|
# Internal Data |
|
Eym = torch.rand(y + m) |
|
# External Data |
|
Xxm = torch.rand(x + m) |
|
|
|
mha = MultiHeadAttention(m[0],jc[0],heads) |
|
assert list(mha.forward(Eym, Xxm).size()) == y + m |
|
|
|
``` |
|
|
|
# 3.4 Computer Vision |
|
|
|
Here, we really start to understand why splitting diagrams into ``fenced off'' blocks aids implementation. |
|
In addition to making diagrams easier to understand and patterns more clearn, blocks indicate how code can structured and organized. |
|
|
|
## Figure 26: Identity Residual Network |
|
<img src="SVG/IdResNet_overall.svg" width="700"> |
|
|
|
|
|
|
|
```python |
|
# For Figure 26, every fenced off region is its own module. |
|
|
|
# Batch norm and then activate is a repeated motif, |
|
class NormActivate(nn.Sequential): |
|
def __init__(self, nf, Norm=nn.BatchNorm2d, Activation=nn.ReLU): |
|
super().__init__(Norm(nf), Activation()) |
|
|
|
def size_to_string(size): |
|
return " ".join(map(str,list(size))) |
|
|
|
# The Identity ResNet block breaks down into a manageable sequence of components. |
|
class IdentityResNet(nn.Sequential): |
|
def __init__(self, N=3, n_mu=[16,64,128,256], y=10): |
|
super().__init__( |
|
nn.Conv2d(3, n_mu[0], 3, padding=1), |
|
Block(1, N, n_mu[0], n_mu[1]), |
|
Block(2, N, n_mu[1], n_mu[2]), |
|
Block(2, N, n_mu[2], n_mu[3]), |
|
NormActivate(n_mu[3]), |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Flatten(), |
|
nn.Linear(n_mu[3], y), |
|
nn.Softmax(-1), |
|
) |
|
``` |
|
|
|
The Block can be defined in a seperate model, keeping the code manageable and closely connected to the diagram. |
|
|
|
<img src="SVG/IdResNet_block.svg" width="700"> |
|
|
|
|
|
```python |
|
# We then follow how diagrams define each ``block'' |
|
class Block(nn.Sequential): |
|
def __init__(self, s, N, n0, n1): |
|
""" n0 and n1 as inputs to the initializer are implicit from having them in the domain and codomain in the diagram. """ |
|
nb = n1 // 4 |
|
super().__init__( |
|
*[ |
|
NormActivate(n0), |
|
ResidualConnection( |
|
nn.Sequential( |
|
nn.Conv2d(n0, nb, 1, s), |
|
NormActivate(nb), |
|
nn.Conv2d(nb, nb, 3, padding=1), |
|
NormActivate(nb), |
|
nn.Conv2d(nb, n1, 1), |
|
), |
|
nn.Conv2d(n0, n1, 1, s), |
|
) |
|
] + [ |
|
ResidualConnection( |
|
nn.Sequential( |
|
NormActivate(n1), |
|
nn.Conv2d(n1, nb, 1), |
|
NormActivate(nb), |
|
nn.Conv2d(nb, nb, 3, padding=1), |
|
NormActivate(nb), |
|
nn.Conv2d(nb, n1, 1) |
|
), |
|
) |
|
] * N |
|
|
|
) |
|
# Residual connections are a repeated pattern in the diagram. So, we are motivated to encapsulate them |
|
# as a seperate module. |
|
class ResidualConnection(nn.Module): |
|
def __init__(self, mainline : nn.Module, connection : nn.Module | None = None) -> None: |
|
super().__init__() |
|
self.main = mainline |
|
self.secondary = nn.Identity() if connection == None else connection |
|
def forward(self, x): |
|
return self.main(x) + self.secondary(x) |
|
``` |
|
|
|
|
|
```python |
|
# A standard image processing algorithm has inputs shaped b c h w. |
|
b, c, hw = [3], [3], [16, 16] |
|
|
|
idresnet = IdentityResNet() |
|
Xbchw = torch.rand(b + c + hw) |
|
|
|
# And we see if the overall size is maintained, |
|
assert list(idresnet.forward(Xbchw).size()) == b + [10] |
|
``` |
|
|
|
The UNet is a more complicated algorithm than residual networks. The ``fenced off'' sections help keep our code organized. Diagrams streamline implementation, and helps keep code organized. |
|
|
|
## Figure 27: The UNet architecture |
|
<img src="SVG/unet.svg" width="700"> |
|
|
|
|
|
```python |
|
# We notice that double convolution where the numbers of channels change is a repeated motif. |
|
# We denote the input with c0 and output with c1. |
|
# This can also be done for subsequent members of an iteration. |
|
# When we go down an iteration eg. 5, 4, etc. we may have the input be c1 and the output c0. |
|
class DoubleConvolution(nn.Sequential): |
|
def __init__(self, c0, c1, Activation=nn.ReLU): |
|
super().__init__( |
|
nn.Conv2d(c0, c1, 3, padding=1), |
|
Activation(), |
|
nn.Conv2d(c0, c1, 3, padding=1), |
|
Activation(), |
|
) |
|
|
|
# The model is specified for a very specific number of layers, |
|
# so we will not make it very flexible. |
|
class UNet(nn.Module): |
|
def __init__(self, y=2): |
|
super().__init__() |
|
# Set up the channel sizes; |
|
c = [1 if i == 0 else 64 * 2 ** i for i in range(6)] |
|
|
|
# Saving and loading from memory means we can not use a single, |
|
# sequential chain. |
|
|
|
# Set up and initialize the components; |
|
self.DownScaleBlocks = [ |
|
DownScaleBlock(c[i],c[i+1]) |
|
for i in range(0,4) |
|
] # Note how this imitates the lambda operators in the diagram. |
|
self.middleDoubleConvolution = DoubleConvolution(c[4], c[5]) |
|
self.middleUpscale = nn.ConvTranspose2d(c[5], c[4], 2, 2, 1) |
|
self.upScaleBlocks = [ |
|
UpScaleBlock(c[5-i],c[4-i]) |
|
for i in range(1,4) |
|
] |
|
self.finalConvolution = nn.Conv2d(c[1], y) |
|
|
|
def forward(self, x): |
|
cLambdas = [] |
|
for dsb in self.DownScaleBlocks: |
|
x, cLambda = dsb(x) |
|
cLambdas.append(cLambda) |
|
x = self.middleDoubleConvolution(x) |
|
x = self.middleUpscale(x) |
|
for usb in self.upScaleBlocks: |
|
cLambda = cLambdas.pop() |
|
x = usb(x, cLambda) |
|
x = self.finalConvolution(x) |
|
|
|
class DownScaleBlock(nn.Module): |
|
def __init__(self, c0, c1) -> None: |
|
super().__init__() |
|
self.doubleConvolution = DoubleConvolution(c0, c1) |
|
self.downScaler = nn.MaxPool2d(2, 2, 1) |
|
def forward(self, x): |
|
cLambda = self.doubleConvolution(x) |
|
x = self.downScaler(cLambda) |
|
return x, cLambda |
|
|
|
class UpScaleBlock(nn.Module): |
|
def __init__(self, c1, c0) -> None: |
|
super().__init__() |
|
self.doubleConvolution = DoubleConvolution(2*c1, c1) |
|
self.upScaler = nn.ConvTranspose2d(c1,c0,2,2,1) |
|
def forward(self, x, cLambda): |
|
# Concatenation occurs over the C channel axis (dim=1) |
|
x = torch.concat(x, cLambda, 1) |
|
x = self.doubleConvolution(x) |
|
x = self.upScaler(x) |
|
return x |
|
``` |
|
|
|
# 3.5 Vision Transformer |
|
|
|
We adapt our code for Multi-Head Attention to apply it to the vision case. This is a good exercise in how neural circuit diagrams allow code to be easily adapted for new modalities. |
|
## Figure 28: Visual Attention |
|
<img src="SVG/visual_attention.svg" width="700"> |
|
|
|
|
|
```python |
|
class VisualAttention(nn.Module): |
|
def __init__(self, c, k, heads = 1, kernel = 1, stride = 1): |
|
super().__init__() |
|
|
|
# w gives the kernel size, which we make adjustable. |
|
self.c, self.k, self.h, self.w = c, k, heads, kernel |
|
# Set up all the boldface, learned components |
|
# Note how standard components may not have axes bound in |
|
# the same way as diagrams. This requires us to rearrange |
|
# using the einops package. |
|
|
|
# The learned layers form convolutions |
|
self.Cq = nn.Conv2d(c, k * heads, kernel, stride) |
|
self.Ck = nn.Conv2d(c, k * heads, kernel, stride) |
|
self.Cv = nn.Conv2d(c, k * heads, kernel, stride) |
|
self.Co = nn.ConvTranspose2d( |
|
k * heads, c, kernel, stride) |
|
|
|
# Defined previously, closely follows the diagram. |
|
def MultiHeadDotProductAttention(self, q: T, k: T, v: T) -> T: |
|
''' ykh, xkh, xkh -> ykh ''' |
|
klength = k.size()[-2] |
|
x = einops.einsum(q, k, '... y k h, ... x k h -> ... y x h') |
|
x = torch.nn.Softmax(-2)(x / math.sqrt(klength)) |
|
x = einops.einsum(x, v, '... y x h, ... x k h -> ... y k h') |
|
return x |
|
|
|
# We have endogenous data (EYc) and external / injected data (XXc) |
|
def forward(self, EcY, XcX): |
|
""" cY, cX -> cY |
|
The visual attention algorithm. Injects information from Xc into Yc. """ |
|
# query, key, and value vectors. |
|
# We unbind the k h axes which were produced by the convolutions, and feed them |
|
# in the normal manner to MultiHeadDotProductAttention. |
|
unbind = lambda x: einops.rearrange(x, 'N (k h) H W -> N (H W) k h', h=self.h) |
|
# Save size to recover it later |
|
q = self.Cq(EcY) |
|
W = q.size()[-1] |
|
|
|
# By appropriately managing the axes, minimal changes to our previous code |
|
# is necessary. |
|
q = unbind(q) |
|
k = unbind(self.Ck(XcX)) |
|
v = unbind(self.Cv(XcX)) |
|
o = self.MultiHeadDotProductAttention(q, k, v) |
|
|
|
# Rebind to feed to the transposed convolution layer. |
|
o = einops.rearrange(o, 'N (H W) k h -> N (k h) H W', |
|
h=self.h, W=W) |
|
return self.Co(o) |
|
|
|
# Single batch element, |
|
b = [1] |
|
Y, X, c, k = [16, 16], [16, 16], [33], 8 |
|
# The additional configurations, |
|
heads, kernel, stride = 4, 3, 3 |
|
|
|
# Internal Data, |
|
EYc = torch.rand(b + c + Y) |
|
# External Data, |
|
XXc = torch.rand(b + c + X) |
|
|
|
# We can now run the algorithm, |
|
visualAttention = VisualAttention(c[0], k, heads, kernel, stride) |
|
|
|
# Interestingly, the height/width reduces by 1 for stride |
|
# values above 1. Otherwise, it stays the same. |
|
visualAttention.forward(EYc, XXc).size() |
|
``` |
|
|
|
|
|
|
|
|
|
torch.Size([1, 33, 15, 15]) |
|
|
|
|
|
|
|
# Appendix |
|
|
|
|
|
```python |
|
# A container to track the size of modules, |
|
# Replace a module definition eg. |
|
# > self.Cq = nn.Conv2d(c, k * heads, kernel, stride) |
|
# With; |
|
# > self.Cq = Tracker(nn.Conv2d(c, k * heads, kernel, stride), "Query convolution") |
|
# And the input / output sizes (to check diagrams) will be printed. |
|
class Tracker(nn.Module): |
|
def __init__(self, module: nn.Module, name : str = ""): |
|
super().__init__() |
|
self.module = module |
|
if name: |
|
self.name = name |
|
else: |
|
self.name = self.module._get_name() |
|
def forward(self, x): |
|
x_size = size_to_string(x.size()) |
|
x = self.module.forward(x) |
|
y_size = size_to_string(x.size()) |
|
print(f"{self.name}: \t {x_size} -> {y_size}") |
|
return x |
|
``` |
|
|