vtabbott's picture
Upload README.md
f620f32 verified
|
raw
history blame
22.2 kB
```python
import torch
import typing
import functorch
import itertools
```
# 2.3 Tensors
### We diagrams tensors, which can be vertically and horizontally decomposed.
<img src="SVG/rediagram.svg" width="700">
```python
# This diagram shows a function h : 3, 4 2, 6 -> 1 2 constructed out of f: 4 2, 6 -> 3 3 and g: 3, 3 3 -> 1 2
# We use assertions and random outputs to represent generic functions, and how diagrams relate to code.
T = torch.Tensor
def f(x0 : T, x1 : T):
""" f: 4 2, 6 -> 3 3 """
assert x0.size() == torch.Size([4,2])
assert x1.size() == torch.Size([6])
return torch.rand([3,3])
def g(x0 : T, x1: T):
""" g: 3, 3 3 -> 1 2 """
assert x0.size() == torch.Size([3])
assert x1.size() == torch.Size([3, 3])
return torch.rand([1,2])
def h(x0 : T, x1 : T, x2 : T):
""" h: 3, 4 2, 6 -> 1 2"""
assert x0.size() == torch.Size([3])
assert x1.size() == torch.Size([4, 2])
assert x2.size() == torch.Size([6])
return g(x0, f(x1,x2))
h(torch.rand([3]), torch.rand([4, 2]), torch.rand([6]))
```
tensor([[0.6837, 0.6853]])
## 2.3.1 Indexes
### Figure 8: Indexes
<img src="SVG/indexes.svg" width="700">
```python
# Extracting a subtensor is a process we are familiar with. Consider,
# A (4 3) tensor
table = torch.arange(0,12).view(4,3)
row = table[2,:]
row
```
tensor([6, 7, 8])
### Figure 9: Subtensors
<img src="SVG/subtensors.svg" width="700">
```python
# Different orders of access give the same result.
# Set up a random (5 7) tensor
a, b = 5, 7
Xab = torch.rand([a] + [b])
# Show that all pairs of indexes give the same result
for ia, jb in itertools.product(range(a), range(b)):
assert Xab[ia, jb] == Xab[ia, :][jb]
assert Xab[ia, jb] == Xab[:, jb][ia]
```
## 2.3.2 Broadcasting
### Figure 10: Broadcasting
<img src="SVG/broadcasting0.svg" width="700">
<img src="SVG/broadcasting0a.svg" width="700">
```python
a, b, c, d = [3], [2], [4], [3]
T = torch.Tensor
# We have some function from a to b;
def G(Xa: T) -> T:
""" G: a -> b """
return sum(Xa**2) + torch.ones(b)
# We could bootstrap a definition of broadcasting,
# Note that we are using spaces to indicate tensoring.
# We will use commas for tupling, which is in line with standard notation while writing code.
def Gc(Xac: T) -> T:
""" G c : a c -> b c """
Ybc = torch.zeros(b + c)
for j in range(c[0]):
Ybc[:,jc] = G(Xac[:,jc])
return Ybc
# Or use a PyTorch command,
# G *: a * -> b *
Gs = torch.vmap(G, -1, -1)
# We feed a random input, and see whether applying an index before or after
# gives the same result.
Xac = torch.rand(a + c)
for jc in range(c[0]):
assert torch.allclose(G(Xac[:,jc]), Gc(Xac)[:,jc])
assert torch.allclose(G(Xac[:,jc]), Gs(Xac)[:,jc])
# This shows how our definition of broadcasting lines up with that used by PyTorch vmap.
```
### Figure 11: Inner Broadcasting
<img src="SVG/inner_broadcasting0.svg" width="700">
<img src="SVG/inner broadcasting0a.svg" width="700">
```python
a, b, c, d = [3], [2], [4], [3]
T = torch.Tensor
# We have some function which can be inner broadcast,
def H(Xa: T, Xd: T) -> T:
""" H: a, d -> b """
return torch.sum(torch.sqrt(Xa**2)) + torch.sum(torch.sqrt(Xd ** 2)) + torch.ones(b)
# We can bootstrap inner broadcasting,
def Hc0(Xca: T, Xd : T) -> T:
""" c0 H: c a, d -> c d """
# Recall that we defined a, b, c, d in [_] arrays.
Ycb = torch.zeros(c + b)
for ic in range(c[0]):
Ycb[ic, :] = H(Xca[ic, :], Xd)
return Ycb
# But vmap offers a clear way of doing it,
# *0 H: * a, d -> * c
Hs0 = torch.vmap(H, (0, None), 0)
# We can show this satisfies Definition 2.14 by,
Xca = torch.rand(c + a)
Xd = torch.rand(d)
for ic in range(c[0]):
assert torch.allclose(Hc0(Xca, Xd)[ic, :], H(Xca[ic, :], Xd))
assert torch.allclose(Hs0(Xca, Xd)[ic, :], H(Xca[ic, :], Xd))
```
### Figure 12 Elementwise operations
<img src="SVG/elementwise0.svg" width="700">
```python
# Elementwise operations are implemented as usual ie
def f(x):
"f : 1 -> 1"
return x ** 2
# We broadcast an elementwise operation,
# f *: * -> *
fs = torch.vmap(f)
Xa = torch.rand(a)
for i in range(a[0]):
# And see that it aligns with the index before = index after framework.
assert torch.allclose(f(Xa[i]), fs(Xa)[i])
# But, elementwise operations are implied, so no special implementation is needed.
assert torch.allclose(f(Xa[i]), f(Xa)[i])
```
# 2.4 Linearity
## 2.4.2 Implementing Linearity and Common Operations
### Figure 17: Multi-head Attention and Einsum
<img src="SVG/implementation.svg" width="700">
```python
import math
import einops
x, y, k, h = 5, 3, 4, 2
Q = torch.rand([y, k, h])
K = torch.rand([x, k, h])
# Local memory contains,
# Q: y k h # K: x k h
# Outer products, transposes, inner products, and
# diagonalization reduce to einops expressions.
# Transpose K,
K = einops.einsum(K, 'x k h -> k x h')
# Outer product and diagonalize,
X = einops.einsum(Q, K, 'y k1 h, k2 x h -> y k1 k2 x h')
# Inner product,
X = einops.einsum(X, 'y k k x h -> y x h')
# Scale,
X = X / math.sqrt(k)
Q = torch.rand([y, k, h])
K = torch.rand([x, k, h])
# Local memory contains,
# Q: y k h # K: x k h
X = einops.einsum(Q, K, 'y k h, x k h -> y x h')
X = X / math.sqrt(k)
```
## 2.4.3 Linear Algebra
### Figure 18: Graphical Linear Algebra
<img src="SVG/linear_algebra.svg" width="700">
```python
# We will do an exercise implementing some of these equivalences.
# The reader can follow this exercise to get a better sense of how linear functions can be implemented,
# and how different forms are equivalent.
a, b, c, d = [3], [4], [5], [3]
# We will be using this function *a lot*
es = einops.einsum
# F: a b c
F_matrix = torch.rand(a + b + c)
# As an exericse we will show that the linear map F: a -> b c can be transposed in two ways.
# Either, we can broadcast, or take an outer product. We will show these are the same.
# Transposing by broadcasting
#
def F_func(Xa: T):
""" F: a -> b c """
return es(Xa,F_matrix,'a,a b c->b c',)
# * F: * a -> * b c
F_broadcast = torch.vmap(F_func, 0, 0)
# We then reduce it, as in the diagram,
# b a -> b b c -> c
def F_broadcast_transpose(Xba: T):
""" (b F) (.b c): b a -> c """
Xbbc = F_broadcast(Xba)
return es(Xbbc, 'b b c -> c')
# Transpoing by linearity
#
# We take the outer product of Id(b) and F, and follow up with a inner product.
# This gives us,
F_outerproduct = es(torch.eye(b[0]), F_matrix,'b0 b1, a b2 c->b0 b1 a b2 c',)
# Think of this as Id(b) F: b0 a -> b1 b2 c arranged into an associated b0 b1 a b2 c tensor.
# We then take the inner product. This gives a (b a c) matrix, which can be used for a (b a -> c) map.
F_linear_transpose = es(F_outerproduct,'b B a B c->b a c',)
# We contend that these are the same.
#
Xba = torch.rand(b + a)
assert torch.allclose(
F_broadcast_transpose(Xba),
es(Xba,F_linear_transpose, 'b a, b a c -> c'))
# Furthermore, lets prove the unit-inner product identity.
#
# The first step is an outer product with the unit,
outerUnit = lambda Xb: es(Xb, torch.eye(b[0]), 'b0, b1 b2 -> b0 b1 b2')
# The next is a inner product over the first two axes,
dotOuter = lambda Xbbb: es(Xbbb, 'b0 b0 b1 -> b1')
# Applying both of these *should* be the identity, and hence leave any input unchanged.
Xb = torch.rand(b)
assert torch.allclose(
Xb,
dotOuter(outerUnit(Xb)))
# Therefore, we can confidently use the expressions in Figure 18 to manipulate expressions.
```
# 3.1 Basic Multi-Layer Perceptron
### Figure 19: Implementing a Basic Multi-Layer Perceptron
<img src="SVG/imagerec.svg" width="700">
```python
import torch.nn as nn
# Basic Image Recogniser
# This is a close copy of an introductory PyTorch tutorial:
# https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html
class BasicImageRecogniser(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
)
def forward(self, x):
x = self.flatten(x)
x = self.linear_relu_stack(x)
y_pred = nn.Softmax(x)
return y_pred
my_BasicImageRecogniser = BasicImageRecogniser()
my_BasicImageRecogniser.forward(torch.rand([1,28,28]))
```
Softmax(
dim=tensor([[ 0.0150, -0.0301, 0.1395, -0.0558, 0.0024, -0.0613, -0.0163, 0.0134,
0.0577, -0.0624]], grad_fn=<AddmmBackward0>)
)
# 3.2 Neural Circuit Diagrams for the Transformer Architecture
### Figure 20: Scaled Dot-Product Attention
<img src="SVG/scaled_attention.svg" width="700">
```python
# Note, that we need to accomodate batches, hence the ... to capture additional axes.
# We can do the algorithm step by step,
def ScaledDotProductAttention(q: T, k: T, v: T) -> T:
''' yk, xk, xk -> yk '''
klength = k.size()[-1]
# Transpose
k = einops.einsum(k, '... x k -> ... k x')
# Matrix Multiply / Inner Product
x = einops.einsum(q, k, '... y k, ... k x -> ... y x')
# Scale
x = x / math.sqrt(klength)
# SoftMax
x = torch.nn.Softmax(-1)(x)
# Matrix Multiply / Inner Product
x = einops.einsum(x, v, '... y x, ... x k -> ... y k')
return x
# Alternatively, we can simultaneously broadcast linear functions.
def ScaledDotProductAttention(q: T, k: T, v: T) -> T:
''' yk, xk, xk -> yk '''
klength = k.size()[-1]
# Inner Product and Scale
x = einops.einsum(q, k, '... y k, ... x k -> ... y x')
# Scale and SoftMax
x = torch.nn.Softmax(-1)(x / math.sqrt(klength))
# Final Inner Product
x = einops.einsum(x, v, '... y x, ... x k -> ... y k')
return x
```
### Figure 21: Multi-Head Attention
<img src="SVG/multihead0.svg" width="700">
We will be implementing this algorithm. This shows us how we go from diagrams to implementations, and begins to give an idea of how organized diagrams leads to organized code.
```python
def MultiHeadDotProductAttention(q: T, k: T, v: T) -> T:
''' ykh, xkh, xkh -> ykh '''
klength = k.size()[-2]
x = einops.einsum(q, k, '... y k h, ... x k h -> ... y x h')
x = torch.nn.Softmax(-2)(x / math.sqrt(klength))
x = einops.einsum(x, v, '... y x h, ... x k h -> ... y k h')
return x
# We implement this component as a neural network model.
# This is necessary when there are bold, learned components that need to be initialized.
class MultiHeadAttention(nn.Module):
# Multi-Head attention has various settings, which become variables
# for the initializer.
def __init__(self, m, k, h):
super().__init__()
self.m, self.k, self.h = m, k, h
# Set up all the boldface, learned components
# Note how they bind axes we want to split, which we do later with einops.
self.Lq = nn.Linear(m, k*h, False)
self.Lk = nn.Linear(m, k*h, False)
self.Lv = nn.Linear(m, k*h, False)
self.Lo = nn.Linear(k*h, m, False)
# We have endogenous data (Eym) and external / injected data (Xxm)
def forward(self, Eym, Xxm):
""" y m, x m -> y m """
# We first generate query, key, and value vectors.
# Linear layers are automatically broadcast.
# However, the k and h axes are bound. We define an unbinder to handle the outputs,
unbind = lambda x: einops.rearrange(x, '... (k h)->... k h', h=self.h)
q = unbind(self.Lq(Eym))
k = unbind(self.Lk(Xxm))
v = unbind(self.Lv(Xxm))
# We feed q, k, and v to standard Multi-Head inner product Attention
o = MultiHeadDotProductAttention(q, k, v)
# Rebind to feed to the final learned layer,
o = einops.rearrange(o, '... k h-> ... (k h)', h=self.h)
return self.Lo(o)
# Now we can run it on fake data;
y, x, m, jc, heads = [20], [22], [128], [16], 4
# Internal Data
Eym = torch.rand(y + m)
# External Data
Xxm = torch.rand(x + m)
mha = MultiHeadAttention(m[0],jc[0],heads)
assert list(mha.forward(Eym, Xxm).size()) == y + m
```
# 3.4 Computer Vision
Here, we really start to understand why splitting diagrams into ``fenced off'' blocks aids implementation.
In addition to making diagrams easier to understand and patterns more clearn, blocks indicate how code can structured and organized.
## Figure 26: Identity Residual Network
<img src="SVG/IdResNet_overall.svg" width="700">
```python
# For Figure 26, every fenced off region is its own module.
# Batch norm and then activate is a repeated motif,
class NormActivate(nn.Sequential):
def __init__(self, nf, Norm=nn.BatchNorm2d, Activation=nn.ReLU):
super().__init__(Norm(nf), Activation())
def size_to_string(size):
return " ".join(map(str,list(size)))
# The Identity ResNet block breaks down into a manageable sequence of components.
class IdentityResNet(nn.Sequential):
def __init__(self, N=3, n_mu=[16,64,128,256], y=10):
super().__init__(
nn.Conv2d(3, n_mu[0], 3, padding=1),
Block(1, N, n_mu[0], n_mu[1]),
Block(2, N, n_mu[1], n_mu[2]),
Block(2, N, n_mu[2], n_mu[3]),
NormActivate(n_mu[3]),
nn.AdaptiveAvgPool2d(1),
nn.Flatten(),
nn.Linear(n_mu[3], y),
nn.Softmax(-1),
)
```
The Block can be defined in a seperate model, keeping the code manageable and closely connected to the diagram.
<img src="SVG/IdResNet_block.svg" width="700">
```python
# We then follow how diagrams define each ``block''
class Block(nn.Sequential):
def __init__(self, s, N, n0, n1):
""" n0 and n1 as inputs to the initializer are implicit from having them in the domain and codomain in the diagram. """
nb = n1 // 4
super().__init__(
*[
NormActivate(n0),
ResidualConnection(
nn.Sequential(
nn.Conv2d(n0, nb, 1, s),
NormActivate(nb),
nn.Conv2d(nb, nb, 3, padding=1),
NormActivate(nb),
nn.Conv2d(nb, n1, 1),
),
nn.Conv2d(n0, n1, 1, s),
)
] + [
ResidualConnection(
nn.Sequential(
NormActivate(n1),
nn.Conv2d(n1, nb, 1),
NormActivate(nb),
nn.Conv2d(nb, nb, 3, padding=1),
NormActivate(nb),
nn.Conv2d(nb, n1, 1)
),
)
] * N
)
# Residual connections are a repeated pattern in the diagram. So, we are motivated to encapsulate them
# as a seperate module.
class ResidualConnection(nn.Module):
def __init__(self, mainline : nn.Module, connection : nn.Module | None = None) -> None:
super().__init__()
self.main = mainline
self.secondary = nn.Identity() if connection == None else connection
def forward(self, x):
return self.main(x) + self.secondary(x)
```
```python
# A standard image processing algorithm has inputs shaped b c h w.
b, c, hw = [3], [3], [16, 16]
idresnet = IdentityResNet()
Xbchw = torch.rand(b + c + hw)
# And we see if the overall size is maintained,
assert list(idresnet.forward(Xbchw).size()) == b + [10]
```
The UNet is a more complicated algorithm than residual networks. The ``fenced off'' sections help keep our code organized. Diagrams streamline implementation, and helps keep code organized.
## Figure 27: The UNet architecture
<img src="SVG/unet.svg" width="700">
```python
# We notice that double convolution where the numbers of channels change is a repeated motif.
# We denote the input with c0 and output with c1.
# This can also be done for subsequent members of an iteration.
# When we go down an iteration eg. 5, 4, etc. we may have the input be c1 and the output c0.
class DoubleConvolution(nn.Sequential):
def __init__(self, c0, c1, Activation=nn.ReLU):
super().__init__(
nn.Conv2d(c0, c1, 3, padding=1),
Activation(),
nn.Conv2d(c0, c1, 3, padding=1),
Activation(),
)
# The model is specified for a very specific number of layers,
# so we will not make it very flexible.
class UNet(nn.Module):
def __init__(self, y=2):
super().__init__()
# Set up the channel sizes;
c = [1 if i == 0 else 64 * 2 ** i for i in range(6)]
# Saving and loading from memory means we can not use a single,
# sequential chain.
# Set up and initialize the components;
self.DownScaleBlocks = [
DownScaleBlock(c[i],c[i+1])
for i in range(0,4)
] # Note how this imitates the lambda operators in the diagram.
self.middleDoubleConvolution = DoubleConvolution(c[4], c[5])
self.middleUpscale = nn.ConvTranspose2d(c[5], c[4], 2, 2, 1)
self.upScaleBlocks = [
UpScaleBlock(c[5-i],c[4-i])
for i in range(1,4)
]
self.finalConvolution = nn.Conv2d(c[1], y)
def forward(self, x):
cLambdas = []
for dsb in self.DownScaleBlocks:
x, cLambda = dsb(x)
cLambdas.append(cLambda)
x = self.middleDoubleConvolution(x)
x = self.middleUpscale(x)
for usb in self.upScaleBlocks:
cLambda = cLambdas.pop()
x = usb(x, cLambda)
x = self.finalConvolution(x)
class DownScaleBlock(nn.Module):
def __init__(self, c0, c1) -> None:
super().__init__()
self.doubleConvolution = DoubleConvolution(c0, c1)
self.downScaler = nn.MaxPool2d(2, 2, 1)
def forward(self, x):
cLambda = self.doubleConvolution(x)
x = self.downScaler(cLambda)
return x, cLambda
class UpScaleBlock(nn.Module):
def __init__(self, c1, c0) -> None:
super().__init__()
self.doubleConvolution = DoubleConvolution(2*c1, c1)
self.upScaler = nn.ConvTranspose2d(c1,c0,2,2,1)
def forward(self, x, cLambda):
# Concatenation occurs over the C channel axis (dim=1)
x = torch.concat(x, cLambda, 1)
x = self.doubleConvolution(x)
x = self.upScaler(x)
return x
```
# 3.5 Vision Transformer
We adapt our code for Multi-Head Attention to apply it to the vision case. This is a good exercise in how neural circuit diagrams allow code to be easily adapted for new modalities.
## Figure 28: Visual Attention
<img src="SVG/visual_attention.svg" width="700">
```python
class VisualAttention(nn.Module):
def __init__(self, c, k, heads = 1, kernel = 1, stride = 1):
super().__init__()
# w gives the kernel size, which we make adjustable.
self.c, self.k, self.h, self.w = c, k, heads, kernel
# Set up all the boldface, learned components
# Note how standard components may not have axes bound in
# the same way as diagrams. This requires us to rearrange
# using the einops package.
# The learned layers form convolutions
self.Cq = nn.Conv2d(c, k * heads, kernel, stride)
self.Ck = nn.Conv2d(c, k * heads, kernel, stride)
self.Cv = nn.Conv2d(c, k * heads, kernel, stride)
self.Co = nn.ConvTranspose2d(
k * heads, c, kernel, stride)
# Defined previously, closely follows the diagram.
def MultiHeadDotProductAttention(self, q: T, k: T, v: T) -> T:
''' ykh, xkh, xkh -> ykh '''
klength = k.size()[-2]
x = einops.einsum(q, k, '... y k h, ... x k h -> ... y x h')
x = torch.nn.Softmax(-2)(x / math.sqrt(klength))
x = einops.einsum(x, v, '... y x h, ... x k h -> ... y k h')
return x
# We have endogenous data (EYc) and external / injected data (XXc)
def forward(self, EcY, XcX):
""" cY, cX -> cY
The visual attention algorithm. Injects information from Xc into Yc. """
# query, key, and value vectors.
# We unbind the k h axes which were produced by the convolutions, and feed them
# in the normal manner to MultiHeadDotProductAttention.
unbind = lambda x: einops.rearrange(x, 'N (k h) H W -> N (H W) k h', h=self.h)
# Save size to recover it later
q = self.Cq(EcY)
W = q.size()[-1]
# By appropriately managing the axes, minimal changes to our previous code
# is necessary.
q = unbind(q)
k = unbind(self.Ck(XcX))
v = unbind(self.Cv(XcX))
o = self.MultiHeadDotProductAttention(q, k, v)
# Rebind to feed to the transposed convolution layer.
o = einops.rearrange(o, 'N (H W) k h -> N (k h) H W',
h=self.h, W=W)
return self.Co(o)
# Single batch element,
b = [1]
Y, X, c, k = [16, 16], [16, 16], [33], 8
# The additional configurations,
heads, kernel, stride = 4, 3, 3
# Internal Data,
EYc = torch.rand(b + c + Y)
# External Data,
XXc = torch.rand(b + c + X)
# We can now run the algorithm,
visualAttention = VisualAttention(c[0], k, heads, kernel, stride)
# Interestingly, the height/width reduces by 1 for stride
# values above 1. Otherwise, it stays the same.
visualAttention.forward(EYc, XXc).size()
```
torch.Size([1, 33, 15, 15])
# Appendix
```python
# A container to track the size of modules,
# Replace a module definition eg.
# > self.Cq = nn.Conv2d(c, k * heads, kernel, stride)
# With;
# > self.Cq = Tracker(nn.Conv2d(c, k * heads, kernel, stride), "Query convolution")
# And the input / output sizes (to check diagrams) will be printed.
class Tracker(nn.Module):
def __init__(self, module: nn.Module, name : str = ""):
super().__init__()
self.module = module
if name:
self.name = name
else:
self.name = self.module._get_name()
def forward(self, x):
x_size = size_to_string(x.size())
x = self.module.forward(x)
y_size = size_to_string(x.size())
print(f"{self.name}: \t {x_size} -> {y_size}")
return x
```