Edit model card

trillsson3-ft-keyword-spotting-14

This model is a fine-tuned version of vumichien/nonsemantic-speech-trillsson3 on the superb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3015
  • Accuracy: 0.9150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 0
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2824 1.0 1597 0.7818 0.6892
0.8003 2.0 3194 0.4443 0.8735
0.7232 3.0 4791 0.3728 0.8833
0.73 4.0 6388 0.3465 0.8973
0.7015 5.0 7985 0.3211 0.9109
0.6981 6.0 9582 0.3200 0.9081
0.6807 7.0 11179 0.3209 0.9059
0.6873 8.0 12776 0.3206 0.9022
0.6416 9.0 14373 0.3124 0.9057
0.6698 10.0 15970 0.3288 0.8950
0.716 11.0 17567 0.3147 0.8998
0.6514 12.0 19164 0.3034 0.9112
0.6513 13.0 20761 0.3091 0.9092
0.652 14.0 22358 0.3056 0.9100
0.7105 15.0 23955 0.3015 0.9150
0.6337 16.0 25552 0.3070 0.9091
0.63 17.0 27149 0.3018 0.9135
0.6672 18.0 28746 0.3084 0.9088
0.6479 19.0 30343 0.3060 0.9101
0.6658 20.0 31940 0.3072 0.9089

Framework versions

  • Transformers 4.23.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train vumichien/trillsson3-ft-keyword-spotting-14