convnext-base
This model is a fine-tuned version of facebook/convnextv2-base-22k-384 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2818
- Accuracy: 0.9442
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5947 | 1.0 | 1099 | 0.4242 | 0.8684 |
0.4798 | 2.0 | 2198 | 0.4242 | 0.8728 |
0.3625 | 3.0 | 3297 | 0.3553 | 0.9078 |
0.2777 | 4.0 | 4396 | 0.3241 | 0.9185 |
0.2368 | 5.0 | 5495 | 0.3413 | 0.9245 |
0.1635 | 6.0 | 6594 | 0.3116 | 0.9356 |
0.1564 | 7.0 | 7693 | 0.2997 | 0.9360 |
0.1082 | 8.0 | 8792 | 0.2916 | 0.9451 |
0.1146 | 9.0 | 9891 | 0.2963 | 0.9431 |
0.0801 | 10.0 | 10990 | 0.2946 | 0.9439 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 180
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for vuongnhathien/convnext-base
Base model
facebook/convnextv2-base-22k-384Evaluation results
- Accuracy on imagefoldervalidation set self-reported0.944