vit-base-1e-4-20ep

This model is a fine-tuned version of google/vit-base-patch16-224 on the vuongnhathien/30VNFoods dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4034
  • Accuracy: 0.8873

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5376 1.0 275 0.4677 0.8640
0.2085 2.0 550 0.4375 0.8811
0.0755 3.0 825 0.4605 0.8899
0.0429 4.0 1100 0.4784 0.8879
0.0146 5.0 1375 0.5386 0.8799
0.0176 6.0 1650 0.5524 0.8803
0.0137 7.0 1925 0.5249 0.8887
0.0076 8.0 2200 0.5401 0.8942
0.0026 9.0 2475 0.5477 0.8934
0.0054 10.0 2750 0.5417 0.8946
0.0034 11.0 3025 0.5430 0.8974
0.0033 12.0 3300 0.5443 0.8954
0.0027 13.0 3575 0.5423 0.8986
0.0024 14.0 3850 0.5434 0.8990
0.0027 15.0 4125 0.5483 0.8962
0.0027 16.0 4400 0.5485 0.8998
0.0019 17.0 4675 0.5502 0.8998
0.0022 18.0 4950 0.5508 0.8998
0.0015 19.0 5225 0.5509 0.9002
0.002 20.0 5500 0.5510 0.9010

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
18
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vuongnhathien/vit-base-1e-4-20ep

Finetuned
(539)
this model

Evaluation results