|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: bert-base-multilingual-cased-twitter-indonesia-sarcastic |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-multilingual-cased-twitter-indonesia-sarcastic |
|
|
|
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4720 |
|
- Accuracy: 0.8290 |
|
- F1: 0.6462 |
|
- Precision: 0.6667 |
|
- Recall: 0.6269 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 100.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.5333 | 1.0 | 59 | 0.4792 | 0.75 | 0.0 | 0.0 | 0.0 | |
|
| 0.4642 | 2.0 | 118 | 0.4418 | 0.7910 | 0.3 | 0.9231 | 0.1791 | |
|
| 0.3961 | 3.0 | 177 | 0.4319 | 0.8134 | 0.5192 | 0.7297 | 0.4030 | |
|
| 0.325 | 4.0 | 236 | 0.5264 | 0.7463 | 0.6180 | 0.4955 | 0.8209 | |
|
| 0.2432 | 5.0 | 295 | 0.4624 | 0.8246 | 0.6299 | 0.6667 | 0.5970 | |
|
| 0.1819 | 6.0 | 354 | 0.4261 | 0.8731 | 0.7069 | 0.8367 | 0.6119 | |
|
| 0.148 | 7.0 | 413 | 0.5371 | 0.8545 | 0.6777 | 0.7593 | 0.6119 | |
|
| 0.0995 | 8.0 | 472 | 0.6810 | 0.8396 | 0.6767 | 0.6818 | 0.6716 | |
|
| 0.0843 | 9.0 | 531 | 0.8350 | 0.8209 | 0.5385 | 0.7568 | 0.4179 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|