w11wo's picture
Update README.md
5067796 verified
metadata
license: mit
base_model: flax-community/indonesian-roberta-base
tags:
  - generated_from_trainer
datasets:
  - indonlu
language:
  - ind
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: indonesian-roberta-base-posp-tagger
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: indonlu
          type: indonlu
          config: posp
          split: test
          args: posp
        metrics:
          - name: Precision
            type: precision
            value: 0.9625100240577386
          - name: Recall
            type: recall
            value: 0.9625100240577386
          - name: F1
            type: f1
            value: 0.9625100240577386
          - name: Accuracy
            type: accuracy
            value: 0.9625100240577386

indonesian-roberta-base-posp-tagger

This model is a fine-tuned version of flax-community/indonesian-roberta-base on the indonlu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1395
  • Precision: 0.9625
  • Recall: 0.9625
  • F1: 0.9625
  • Accuracy: 0.9625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 420 0.2254 0.9313 0.9313 0.9313 0.9313
0.4398 2.0 840 0.1617 0.9499 0.9499 0.9499 0.9499
0.1566 3.0 1260 0.1431 0.9569 0.9569 0.9569 0.9569
0.103 4.0 1680 0.1412 0.9605 0.9605 0.9605 0.9605
0.0723 5.0 2100 0.1408 0.9635 0.9635 0.9635 0.9635
0.051 6.0 2520 0.1408 0.9642 0.9642 0.9642 0.9642
0.051 7.0 2940 0.1510 0.9635 0.9635 0.9635 0.9635
0.0368 8.0 3360 0.1653 0.9645 0.9645 0.9645 0.9645
0.0277 9.0 3780 0.1664 0.9644 0.9644 0.9644 0.9644
0.0231 10.0 4200 0.1668 0.9646 0.9646 0.9646 0.9646

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.1