w11wo's picture
Librarian Bot: Add base_model information to model (#2)
3b245f3
---
language: ko
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
datasets:
- kresnik/zeroth_korean
base_model: Wav2Vec2-XLS-R-300M
model-index:
- name: Wav2Vec2 XLS-R 300M Korean LM
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Zeroth Korean
type: kresnik/zeroth_korean
args: clean
metrics:
- type: wer
value: 30.94
name: Test WER
- type: cer
value: 7.97
name: Test CER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: ko
metrics:
- type: wer
value: 68.34
name: Test WER
- type: cer
value: 37.08
name: Test CER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ko
metrics:
- type: wer
value: 66.47
name: Test WER
---
# Wav2Vec2 XLS-R 300M Korean LM
Wav2Vec2 XLS-R 300M Korean LM is an automatic speech recognition model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [Wav2Vec2-XLS-R-300M](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [Zeroth Korean](https://huggingface.co/datasets/kresnik/zeroth_korean) dataset. A 5-gram Language model, trained on the Korean subset of [Open Subtitles](https://huggingface.co/datasets/open_subtitles), was then subsequently added to this model.
This model was trained using HuggingFace's PyTorch framework and is part of the [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH.
All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-korean-lm/tree/main) tab, as well as the [Training metrics](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-korean-lm/tensorboard) logged via Tensorboard.
As for the N-gram language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by HuggingFace.
## Model
| Model | #params | Arch. | Training/Validation data (text) |
| ------------------------------- | ------- | ----- | ------------------------------- |
| `wav2vec2-xls-r-300m-korean-lm` | 300M | XLS-R | `Zeroth Korean` Dataset |
## Evaluation Results
The model achieves the following results on evaluation without a language model:
| Dataset | WER | CER |
| -------------------------------- | ------ | ------ |
| `Zeroth Korean` | 29.54% | 9.53% |
| `Robust Speech Event - Dev Data` | 76.26% | 38.67% |
With the addition of the language model, it achieves the following results:
| Dataset | WER | CER |
| -------------------------------- | ------ | ------ |
| `Zeroth Korean` | 30.94% | 7.97% |
| `Robust Speech Event - Dev Data` | 68.34% | 37.08% |
## Training procedure
The training process did not involve the addition of a language model. The following results were simply lifted from the original automatic speech recognition [model training](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-korean).
### Training hyperparameters
The following hyperparameters were used during training:
- `learning_rate`: 7.5e-05
- `train_batch_size`: 8
- `eval_batch_size`: 8
- `seed`: 42
- `gradient_accumulation_steps`: 4
- `total_train_batch_size`: 32
- `optimizer`: Adam with `betas=(0.9, 0.999)` and `epsilon=1e-08`
- `lr_scheduler_type`: linear
- `lr_scheduler_warmup_steps`: 2000
- `num_epochs`: 50.0
- `mixed_precision_training`: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
| :-----------: | :---: | :---: | :-------------: | :----: | :----: |
| 19.7138 | 0.72 | 500 | 19.6427 | 1.0 | 1.0 |
| 4.8039 | 1.44 | 1000 | 4.7842 | 1.0 | 1.0 |
| 4.5619 | 2.16 | 1500 | 4.5608 | 0.9992 | 0.9598 |
| 4.254 | 2.88 | 2000 | 4.2729 | 0.9955 | 0.9063 |
| 4.1905 | 3.6 | 2500 | 4.2257 | 0.9903 | 0.8758 |
| 4.0683 | 4.32 | 3000 | 3.9294 | 0.9937 | 0.7911 |
| 3.486 | 5.04 | 3500 | 2.7045 | 1.0012 | 0.5934 |
| 2.946 | 5.75 | 4000 | 1.9691 | 0.9425 | 0.4634 |
| 2.634 | 6.47 | 4500 | 1.5212 | 0.8807 | 0.3850 |
| 2.4066 | 7.19 | 5000 | 1.2551 | 0.8177 | 0.3601 |
| 2.2651 | 7.91 | 5500 | 1.0423 | 0.7650 | 0.3039 |
| 2.1828 | 8.63 | 6000 | 0.9599 | 0.7273 | 0.3106 |
| 2.1023 | 9.35 | 6500 | 0.9482 | 0.7161 | 0.3063 |
| 2.0536 | 10.07 | 7000 | 0.8242 | 0.6767 | 0.2860 |
| 1.9803 | 10.79 | 7500 | 0.7643 | 0.6563 | 0.2637 |
| 1.9468 | 11.51 | 8000 | 0.7319 | 0.6441 | 0.2505 |
| 1.9178 | 12.23 | 8500 | 0.6937 | 0.6320 | 0.2489 |
| 1.8515 | 12.95 | 9000 | 0.6443 | 0.6053 | 0.2196 |
| 1.8083 | 13.67 | 9500 | 0.6286 | 0.6122 | 0.2148 |
| 1.819 | 14.39 | 10000 | 0.6015 | 0.5986 | 0.2074 |
| 1.7684 | 15.11 | 10500 | 0.5682 | 0.5741 | 0.1982 |
| 1.7195 | 15.83 | 11000 | 0.5385 | 0.5592 | 0.2007 |
| 1.7044 | 16.55 | 11500 | 0.5362 | 0.5524 | 0.2097 |
| 1.6879 | 17.27 | 12000 | 0.5119 | 0.5489 | 0.2083 |
| 1.656 | 17.98 | 12500 | 0.4990 | 0.5362 | 0.1968 |
| 1.6122 | 18.7 | 13000 | 0.4561 | 0.5092 | 0.1900 |
| 1.5919 | 19.42 | 13500 | 0.4778 | 0.5225 | 0.1975 |
| 1.5896 | 20.14 | 14000 | 0.4563 | 0.5098 | 0.1859 |
| 1.5589 | 20.86 | 14500 | 0.4362 | 0.4940 | 0.1725 |
| 1.5353 | 21.58 | 15000 | 0.4140 | 0.4826 | 0.1580 |
| 1.5441 | 22.3 | 15500 | 0.4031 | 0.4742 | 0.1550 |
| 1.5116 | 23.02 | 16000 | 0.3916 | 0.4748 | 0.1545 |
| 1.4731 | 23.74 | 16500 | 0.3841 | 0.4810 | 0.1542 |
| 1.4647 | 24.46 | 17000 | 0.3752 | 0.4524 | 0.1475 |
| 1.4328 | 25.18 | 17500 | 0.3587 | 0.4476 | 0.1461 |
| 1.4129 | 25.9 | 18000 | 0.3429 | 0.4242 | 0.1366 |
| 1.4062 | 26.62 | 18500 | 0.3450 | 0.4251 | 0.1355 |
| 1.3928 | 27.34 | 19000 | 0.3297 | 0.4145 | 0.1322 |
| 1.3906 | 28.06 | 19500 | 0.3210 | 0.4185 | 0.1336 |
| 1.358 | 28.78 | 20000 | 0.3131 | 0.3970 | 0.1275 |
| 1.3445 | 29.5 | 20500 | 0.3069 | 0.3920 | 0.1276 |
| 1.3159 | 30.22 | 21000 | 0.3035 | 0.3961 | 0.1255 |
| 1.3044 | 30.93 | 21500 | 0.2952 | 0.3854 | 0.1242 |
| 1.3034 | 31.65 | 22000 | 0.2966 | 0.3772 | 0.1227 |
| 1.2963 | 32.37 | 22500 | 0.2844 | 0.3706 | 0.1208 |
| 1.2765 | 33.09 | 23000 | 0.2841 | 0.3567 | 0.1173 |
| 1.2438 | 33.81 | 23500 | 0.2734 | 0.3552 | 0.1137 |
| 1.2487 | 34.53 | 24000 | 0.2703 | 0.3502 | 0.1118 |
| 1.2249 | 35.25 | 24500 | 0.2650 | 0.3484 | 0.1142 |
| 1.2229 | 35.97 | 25000 | 0.2584 | 0.3374 | 0.1097 |
| 1.2374 | 36.69 | 25500 | 0.2568 | 0.3337 | 0.1095 |
| 1.2153 | 37.41 | 26000 | 0.2494 | 0.3327 | 0.1071 |
| 1.1925 | 38.13 | 26500 | 0.2518 | 0.3366 | 0.1077 |
| 1.1908 | 38.85 | 27000 | 0.2437 | 0.3272 | 0.1057 |
| 1.1858 | 39.57 | 27500 | 0.2396 | 0.3265 | 0.1044 |
| 1.1808 | 40.29 | 28000 | 0.2373 | 0.3156 | 0.1028 |
| 1.1842 | 41.01 | 28500 | 0.2356 | 0.3152 | 0.1026 |
| 1.1668 | 41.73 | 29000 | 0.2319 | 0.3188 | 0.1025 |
| 1.1448 | 42.45 | 29500 | 0.2293 | 0.3099 | 0.0995 |
| 1.1327 | 43.17 | 30000 | 0.2265 | 0.3047 | 0.0979 |
| 1.1307 | 43.88 | 30500 | 0.2222 | 0.3078 | 0.0989 |
| 1.1419 | 44.6 | 31000 | 0.2215 | 0.3038 | 0.0981 |
| 1.1231 | 45.32 | 31500 | 0.2193 | 0.3013 | 0.0972 |
| 1.139 | 46.04 | 32000 | 0.2162 | 0.3007 | 0.0968 |
| 1.1114 | 46.76 | 32500 | 0.2122 | 0.2982 | 0.0960 |
| 1.111 | 47.48 | 33000 | 0.2125 | 0.2946 | 0.0948 |
| 1.0982 | 48.2 | 33500 | 0.2099 | 0.2957 | 0.0953 |
| 1.109 | 48.92 | 34000 | 0.2092 | 0.2955 | 0.0955 |
| 1.0905 | 49.64 | 34500 | 0.2088 | 0.2954 | 0.0953 |
## Disclaimer
Do consider the biases which came from pre-training datasets that may be carried over into the results of this model.
## Authors
Wav2Vec2 XLS-R 300M Korean LM was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on OVH Cloud.
## Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.10.3